Abstract:
An apparatus of a base station in a wireless communication system supporting time division duplex (TDD) and a method thereof are provided. The apparatus includes at least one transceiver, and at least one processor operatively connected with the at least one transceiver. The at least one processor may be configured to perform signaling for preventing transmission of an uplink (UL) signal in a cell, and measure a strength of a downlink (DL) signal received from at least one base station during at least one symbol in a UL subframe. The apparatus relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long-Term Evolution (LTE).
Abstract:
An apparatus of a base station in a wireless communication system supporting time division duplex (TDD) and a method thereof are provided. The apparatus includes at least one transceiver, and at least one processor operatively connected with the at least one transceiver. The at least one processor may be configured to perform signaling for preventing transmission of an uplink (UL) signal in a cell, and measure a strength of a downlink (DL) signal received from at least one base station during at least one symbol in a UL subframe. The apparatus relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long-Term Evolution (LTE).
Abstract:
A method for selecting a serving cell by a user equipment (UE) to which the inter-site carrier aggregation (CA) technology is according to the intensity of a reception signal of each carrier wave is provided. However, in order to improve resource usage and a throughput of the entire cells, a method is performed in which a PCell and an SCell are selected considering the intensity of a reception signal and a load between cells, the SCell is activated, and loads of the PCell and the SCell are adjusted. The method can balance an inter-cell traffic load, and eventually, increase usage of the entirety of a network and improve a throughput.
Abstract:
An apparatus of a base station in a wireless communication system supporting time division duplex (TDD) and a method thereof are provided. The apparatus includes at least one transceiver, and at least one processor operatively connected with the at least one transceiver. The at least one processor may be configured to perform signaling for preventing transmission of an uplink (UL) signal in a cell, and measure a strength of a downlink (DL) signal received from at least one base station during at least one symbol in a UL subframe. The apparatus relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as Long-Term Evolution (LTE).
Abstract:
One embodiment of the present invention provides an apparatus comprising a transceiving unit and a control unit, and a communication method using the same, wherein the transceiving unit is configured to perform communication with at least one network node in a macro cell, the macro cell comprising at least one small cell and communicating in an FDD mode, and wherein the control unit is configured to control the small cell to communicate in a TDD mode, generate control information for preventing the occurrence of handover when a terminal moves between the small cells within the macro cell, and perform control to transmit the control information to the terminal.
Abstract:
A semiconductor device includes an insulating base layer, a plurality of semiconductor patterns stacked on the insulating base layer and spaced apart from each other, a gate structure surrounding the plurality of semiconductor patterns, first and second source/drain patterns disposed on the insulating base layer and connected to both side surfaces of the plurality of semiconductor patterns, respectively, a contact structure connected to first source/drain patterns through the insulating base layer, a sidewall insulating film disposed between an upper portion of the contact structure and an upper portion of the insulating base layer and extending onto a region of a portion of the gate structure located below a lowermost semiconductor pattern among the plurality of semiconductor patterns, and a power transmission line disposed on a lower surface of the insulating base layer and connected to the contact structure.
Abstract:
A method of manufacturing a semiconductor device is provided. The method includes: forming, on a substrate, dummy gate structures extending in a first direction, spaced apart from one another along a second direction, forming a first oxide layer on the dummy gate structures, etching an upper portion of the first oxide layer and the dummy gate to form a recess region, providing a first nitride layer in the recessed region, forming a second oxide layer on the first nitride layer and the first oxide layer, partially removing upper portions of the first oxide layer and the second oxide layer and providing a second nitride layer on the first and second oxide layers.
Abstract:
An apparatus of a base station in a wireless communication system supporting time division duplex (TDD) and a method thereof are provided. The apparatus includes at least one transceiver, and at least one processor operatively connected with the at least one transceiver. The at least one processor may be configured to perform signaling for preventing transmission of an uplink (UL) signal in a cell, and measure a strength of a downlink (DL) signal received from at least one base station during at least one symbol in a UL subframe. The apparatus relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as Long-Term Evolution (LTE).
Abstract:
A method for operating an apparatus that performs traffic control traffic in a wireless communication system is provided. The method includes receiving information about a terminal to be controlled, detecting a congestion situation in a cell, and changing a parameter relating to scheduling of the terminal to be controlled, according to the detection of the congestion situation.
Abstract:
One embodiment of the present invention provides an apparatus comprising a transceiving unit and a control unit, and a communication method using the same, wherein the transceiving unit is configured to perform communication with at least one network node in a macro cell, the macro cell comprising at least one small cell and communicating in an FDD mode, and wherein the control unit is configured to control the small cell to communicate in a TDD mode, generate control information for preventing the occurrence of handover when a terminal moves between the small cells within the macro cell, and perform control to transmit the control information to the terminal.