Abstract:
A negative active material including an active material core; and a polymer layer disposed on a surface of the active material core, wherein the polymer layer includes a third polymer including a cross-linked product of a first polymer and a second polymer, wherein the first polymer is at least one of polyamic acid, polyimide, or a combination thereof, and includes a first functional group; and the second polymer is water-soluble and includes a second functional group, and wherein the first polymer and the second polymer are cross-linked by an ester bond that is formed through at least one reaction starting from the first functional group and the second functional group, and at least one of the first polymer and the second polymer further includes a halogen group.
Abstract:
A composite negative active material including: a silicon-containing negative active material; and a non-metal doped metal phosphate, wherein the non-metal doped metal phosphate includes two or more metals. Also a negative electrode including the composite negative active material, and a lithium secondary battery including the negative electrode
Abstract:
A lithium-transition metal complex compound has an nth order hierarchical structure in which n type structures represented by at least one unit of ath order units in a range of 1×10-(a+5) m to 10×10-(a+5) m exist in a complex form, wherein n is a natural number that is 2 or greater, and a is a natural number in a range of 1 to 5. The lithium-transition metal complex may be prepared by heat-treating a mixture including a lithium source, a transition metal source, and solvent in contact with a natural material having a hierarchical structure. A lithium battery includes an electrode including the lithium-transition metal complex compound having the nth order hierarchical structure. The lithium battery can have improved rapid charging characteristics, high power characteristics, and cycle characteristics.
Abstract:
A composite electrode active material including: a core, which is capable of intercalating and deintercalating lithium; and a surface treatment layer disposed on the core, wherein the surface treatment layer comprises a lithium-free oxide that has a spinel structure and includes a dopant, wherein the dopant includes at least one selected from fluorine, sulfur, nitrogen, boron, and phosphorous.
Abstract:
A composite negative active material, and a negative electrode and a lithium secondary battery that include the composite negative active material, and a method of preparing the composite negative active material are disclosed. The composite negative active material includes: a core including a silicon material and a coating layer disposed on the core, wherein the coating layer includes a water-insoluble polymer composite in which at least one anionic component is chemically bonded to a water-soluble polymer, thereby improving lifespan characteristics of the composite negative active material.
Abstract:
A composite negative active material including: a silicon-containing negative active material; and a non-metal doped metal phosphate, wherein the non-metal doped metal phosphate includes two or more metals. Also a negative electrode including the composite negative active material, and a lithium secondary battery including the negative electrode
Abstract:
A composite electrode active material including: a core, which is capable of intercalating and deintercalating lithium; and a surface treatment layer disposed on the core, wherein the surface treatment layer comprises a lithium-free oxide that has a spinel structure and includes a dopant, wherein the dopant includes at least one selected from fluorine, sulfur, nitrogen, boron, and phosphorous.
Abstract:
A composite negative active material, and a negative electrode and a lithium secondary battery that include the composite negative active material, and a method of preparing the composite negative active material are disclosed. The composite negative active material includes: a core including a silicon material and a coating layer disposed on the core, wherein the coating layer includes a water-insoluble polymer composite in which at least one anionic component is chemically bonded to a water-soluble polymer, thereby improving lifespan characteristics of the composite negative active material.