Abstract:
The present invention proposes a hybrid spatial multiplexing (SM) and a space division multiple access (SDMA) technique in a frequency division duplex (FDD) massive multiple-input multiple output (MIMO) system using a two-dimensional planar array antenna, which effectively transmits a channel state information reference signal (CSI-RS) for estimating a downlink two-dimensional space channel using only a limited amount of downlink radio resources, and optimally selects and performs the SM and SDMA techniques in a two-dimensional space channel. To this end, the present invention proposes a technique which defines space resource blocks (SRB) by grouping space elements (SE) having a high spatial correlation between downlink channels in the horizontal dimension and corresponding SEs thereof in the vertical dimension, and transmits CSI-RSs for estimating channels in vertical dimension SEs corresponding to one selected horizontal SE in each SRB every transmit time interval (TTI). The present invention proposes a technique wherein user equipment (UE) estimates the spatial correlation between channels of different horizontal dimension SEs belonging to the same SRB received in different TTIs and the spatial correlation between channels of horizontal dimension SEs belonging to different SRBs received in the same TTI, and feeds information for changing the size of SRB of the corresponding UE to an optimal size back to eNodeB. The present invention proposes a technique wherein the UE estimates downlink channels through CSI-RSs transmitted from each SRB, and each UE feeds an index of a preferred SRB, a rank of the corresponding SRB in the vertical dimension, and channel quality information (CQI) back to eNodeB. When each UE determines the rank, it is possible to transmit the ranks to the fullest extent in the vertical dimension and only a single rank from each SRB in the horizontal dimension.
Abstract:
A Channel State Information (CSI) feedback method and apparatus is provided for transmitting, at a base station, the CSIs for plural transmit antennas with a limited amount resource and receiving, at a mobile station, the CSIs efficiently in a massive Multiple Input Multiple Output (MIMO) system operating in the Frequency Division Duplex (FDD) mode.
Abstract:
A method and an apparatus for sending and receiving channel state information in network Multiple-Input Multiple-Output (MIMO) wireless communication systems are provided. Hybrid feedback technology is provided to transfer complete Channel State Information (CSI) to a transmitter by efficiently combining limited amounts of long-term channel information and short-term channel information are In a down link MIMO network system.
Abstract:
A method and an apparatus are provided for transmitting channel state information (CSI) by a terminal in a communication system. The method includes receiving a first signal from a first serving cell; receiving a second signal from a second serving cell; calculating first CSI for the first serving cell based on the first signal; calculating second CSI for the first serving cell based on the first signal; calculating first CSI for the second serving cell based on the second signal; calculating second CSI for the second serving cell based on the second signal; transmitting the first CSI and the second CSI for the first serving cell respectively; and transmitting the first CSI and the second CSI for the second serving cell respectively.
Abstract:
The present invention proposes an apparatus and a method capable of forming M*N number of beams by a base station, which supports signal transmission/reception of the macro service area in heterogeneous networks in which a macro service area is formed with the M*N number of beams through a two-dimensional arrangement simultaneously considering the horizontal dimension and the vertical dimension and at least one small service is formed in the macro service area. To this end, at least one interference prediction beam formed to transmit signals interfering in transmission signals in at least one small service area from among the signals to be transmitted by the M*N number of beams is selected, and each of the M*N number of beams is formed in consideration of the inter-cell interference in at least one small service area due to the signals to be transmitted by at least one selected interference prediction beam.
Abstract:
A method and an apparatus for sending and receiving channel state information in network Multiple-Input Multiple-Output (MIMO) wireless communication systems are provided. Hybrid feedback technology is provided to transfer complete Channel State Information (CSI) to a transmitter by efficiently combining limited amounts of long-term channel information and short-term channel information are In a down link MIMO network system.
Abstract:
An apparatus and method for transmitting/receiving data in a mobile communication system using multiple antennas are provided. A receiver estimates a fading channel of received data, selects a weight set relative to a maximum data transmission rate from at least one weight set with elements of a plurality of orthogonal weight vectors, and transmits feedback information including the selected weight set and channel-by-channel state information to a transmitter. The transmitter demultiplexes data to be transmitted on a basis of the feedback information into at least one sub-data stream, multiplies each sub-data stream by an associated weight, and transmits the data.
Abstract:
A method and an apparatus are provided for transmitting channel state information (CSI) by a terminal in a communication system. The method includes receiving a first signal from a first serving cell; receiving a second signal from a second serving cell; calculating first CSI for the first serving cell based on the first signal; calculating second CSI for the first serving cell based on the first signal; calculating first CSI for the second serving cell based on the second signal; calculating second CSI for the second serving cell based on the second signal; transmitting the first CSI and the second CSI for the first serving cell respectively; and transmitting the first CSI and the second CSI for the second serving cell respectively.
Abstract:
An apparatus and method for transmitting/receiving data in a mobile communication system using multiple antennas are provided. A receiver estimates a fading channel of received data, selects a weight set relative to a maximum data transmission rate from at least one weight set with elements of a plurality of orthogonal weight vectors, and transmits feedback information including the selected weight set and channel-by-channel state information to a transmitter. The transmitter demultiplexes data to be transmitted on a basis of the feedback information into at least one sub-data stream, multiplies each sub-data stream by an associated weight, and transmits the data.
Abstract:
Methods and apparatus are provided for beamforming and information feedback are provided. Signals for beams to be transmitted through corresponding antenna ports, are generated. The beams are formed by precoding the signals with beamforming vectors. The beams are sorted into a number of resource reuse groups based on a resource that is to be shared. The beams are transmitted, using resources allocated per group, to a receiver. Feedback information is generated on at least one antenna port, based on the received beams. The feedback information is transmitted to the transmitter. A beam is selected having a greatest gain for a transmitter using the feedback information. A transmission resource is allocated for the selected beam.