Abstract:
Provided is a method of fabricating a wire grid polarizer, the method comprising an organic light-emitting display panel. According to an aspect of the present disclosure, there is provided a method comprising sequentially stacking a conductive wire pattern layer, a first neutral layer, a guide pattern layer and a second neutral layer on a substrate, forming etch-stop patterns on the second neutral layer, forming second neutral layer patterns and guide patterns by patterning the second neutral layer and the guide pattern layer using the etch-stop patterns, coating a block copolymer of two types of monomer blocks having different etch rates on the first neutral layer and the second neutral layer patterns, aligning the block copolymer, removing one type of monomer blocks from the aligned block copolymer, and patterning the conductive wire pattern layer using the remaining monomer blocks, the second neutral layer patterns, and the guide patterns.
Abstract:
A block copolymer is provided. The block copolymer according to an exemplary embodiment includes a first block represented by Chemical Formula 1 and a second block represented by Chemical Formula 2: wherein COM1 and COM2 are independently selected from a polystyrene moiety, polymethylmethacrylate moiety, polyethylene oxide moiety, polyvinylpyridine moiety, polydimethylsiloxane moiety, polyferrocenyldimethylsilane moiety, and polyisoprene moiety, R1 is hydrogen or an alkyl group with 1 to 10 carbon atoms, Ph is a phenyl group, a is 1 to 50, R2 is hydrogen or an alkyl group with 1 to 10 carbon atoms, and b is 1 to 50.
Abstract:
A display device includes a display unit including a plurality of pixels to display a display image, a luminance detector to detect luminance of an image on the display unit, and a display driver. The display divider is to divide the display unit into image areas symmetrical to each other and to adjust a luminance of an image area having a relatively lower luminance value among the image areas symmetrical to each other based on a luminance detection result.
Abstract:
A manufacturing method of a liquid crystal display includes: forming an etch target layer including a conductive material on a first substrate; forming a first mask layer on the etch target layer; forming a block copolymer coating layer including a plurality of polymers on the first mask layer; processing the block copolymer coating layer to form a block copolymer pattern layer including first and second polymer blocks; removing one of the first or second polymer blocks to form a second mask pattern layer; etching the first mask layer by using the second mask pattern layer as an etching mask to form a first mask pattern layer; and etching the etch target layer by using the first mask pattern layer as an etching mask to form a first electrode. The first electrode includes a plurality of the first minute patterns extending in a predetermined direction and having a polarization function.
Abstract:
A block copolymer includes: a first block, and a second block copolymerized with the first block. The second block includes a silyl group including a ring-type functional group.
Abstract:
A block copolymer is provided. The block copolymer according to an exemplary embodiment includes a first block represented by Chemical Formula 1 and a second block represented by Chemical Formula 2: wherein COM1 and COM2 are independently selected from a polystyrene moiety, polymethylmethacrylate moiety, polyethylene oxide moiety, polyvinylpyridine moiety, polydimethylsiloxane moiety, polyferrocenyldimethylsilane moiety, and polyisoprene moiety, R1 is hydrogen or an alkyl group with 1 to 10 carbon atoms, Ph is a phenyl group, a is 1 to 50, R2 is hydrogen or an alkyl group with 1 to 10 carbon atoms, and b is 1 to 50.
Abstract:
An approach is provided for manufacturing a nanostructure. A first thin film including a first block copolymer is formed on a substrate. A guide pattern is formed on the first thin film. A second thin film including a second block copolymer is formed between portions of the guide pattern. The second thin film is cured. The first block copolymer is a cylinder-type and the second block copolymer is a lamella-type.
Abstract:
An approach is provided for manufacturing a nanostructure. A first thin film including a first block copolymer is formed on a substrate. A guide pattern is formed on the first thin film. A second thin film including a second block copolymer is formed between portions of the guide pattern. The second thin film is cured. The first block copolymer is a cylinder-type and the second block copolymer is a lamella-type.