Abstract:
A resin composition includes a polyimide, an ultraviolet (UV) absorber represented by the following Chemical Formula 1 and a remaining N-methyl-2-pyrrolidone, and wherein, in Chemical Formula 1, R1 and R2 are each selected from a hydrogen group, a halogen group, an aliphatic substituent, and an aromatic group.
Abstract:
A photo mask includes a transparent substrate, a transflective member, and a light shielding member. The transparent substrate has a transflective region including a first region, a second region located in opposing lateral portions of the first region, and an edge region located adjacent to the first and second regions, and a light shielding region surrounding the transflective region. The transflective member is disposed in the first, second and edge regions under the transparent substrate, and has a different light transmittance in each of the first, second and edge regions. The light shielding member is disposed in the light shielding region under the transparent substrate, and defines an opening which exposes the transflective region. The light shielding member includes a long side extending in a first direction parallel to an upper surface of the transparent substrate and a short side extending in a second direction.
Abstract:
A touch panel includes: a uni-axially oriented base film; a transparent electrode pattern layer positioned on the uni-axially oriented base film; a first passivation layer formed in an edge region of the transparent electrode pattern layer and covering end portion side walls of the transparent electrode pattern layer; and a contact hole positioned on the first passivation layer and exposing the first passivation layer.
Abstract:
A liquid crystal display including: a first insulating substrate; a plurality of color filters disposed on the first insulating substrate; a light blocking member disposed on the color filters; a second insulating substrate facing the first insulating substrate; and a spacer disposed between the first insulating substrate and the second insulating substrate. The spacer includes a main column spacer and a sub-column spacer spaced apart from each other by a predetermined distance, a protrusion protruding toward the second insulating substrate by stacking at least one sub-color filter on the color filter, the main column spacer is disposed on the protrusion, and the light blocking member and the spacer are made of the same material.
Abstract:
An electronic device includes an electronic panel including an active area and a pad area and including an input sensing member and a circuit board overlapping at least a side of the pad area. The electronic panel includes a first conductive layer, a second conductive layer, a first organic insulation layer disposed between the first conductive layer and the second conductive layer, a pattern layer disposed on the second conductive layer, overlapping the plurality of second conductive patterns, and including a plurality of organic patterns, and a second organic insulation layer covering the pattern layer and the second conductive layer. The pattern layer covers an upper surface of the second conductive layer.
Abstract:
A display device includes a display panel including a plurality of pixels; and a color filter member on the display panel. The color filter member includes a partition member where a plurality of opening parts each overlapping with at least one of the plurality of pixels on a plane is defined, a liquid-repellent coating layer covering the partition member, and a color conversion member including a first color conversion pattern and a second conversion pattern, which are in each of the opening parts and provide different light. The first color conversion pattern includes a first bent part and a first color conversion part, which include the same material and contact each other to form an interface. The second color conversion pattern includes a second bent part and a second color conversion part, which include the same material and contact each other to form an interface.
Abstract:
An exemplary embodiment of present disclosure provides a color conversion panel including: a substrate; a plurality of light blocking layers disposed on the substrate; a color conversion layer disposed on the substrate between the plurality of the light blocking layers and including quantum dots; an optical filter layer covering the color conversion layer and the light blocking layers; and a hydrogen blocking layer disposed on one surface of the optical filter layer.
Abstract:
A display device with a simplified manufacturing method is presented. The display device includes: a substrate; a thin film transistor formed on the substrate; a pixel electrode connected to the thin film transistor; a roof layer formed to be separated from the pixel electrode via a plurality of microcavities on the pixel electrode; a liquid crystal layer filling the microcavities; and an encapsulation layer formed on the roof layer and sealing the microcavities, wherein the roof layer includes a partition positioned between the plurality of microcavities, and the partition has a width decreases with increasing distance from the substrate.
Abstract:
A thin film transistor display panel includes a gate electrode on a substrate; a gate insulating layer on the substrate and the gate electrode; a planarization layer on the gate insulating layer and at opposing sides of the gate electrode, where the planarization layer exposes the gate insulating layer; a semiconductor layer on the gate insulating layer; and a source electrode and a drain electrode on the semiconductor layer and spaced apart from each other.
Abstract:
An electronic device includes an electronic panel including an active area and a pad area and including an input sensing member and a circuit board overlapping at least a side of the pad area. The electronic panel includes a first conductive layer, a second conductive layer, a first organic insulation layer disposed between the first conductive layer and the second conductive layer, a pattern layer disposed on the second conductive layer, overlapping the plurality of second conductive patterns, and including a plurality of organic patterns, and a second organic insulation layer covering the pattern layer and the second conductive layer. The pattern layer covers an upper surface of the second conductive layer.