Abstract:
A thin film transistor array substrate includes: a first conductive layer including first lines for transmitting data signals to the thin film transistors; a second conductive layer disposed on the first conductive layer and including second lines for supplying a driving voltage to the thin film transistors; a first insulating layer disposed between a semiconductor layer and the first conductive layer and including a first material layer; a second insulating layer disposed between the first conductive layer and the second conductive layer and including a second material layer having a dielectric constant greater than that of the first material layer; and a contact plug penetrating the second insulating layer and the first insulating layer, and connecting the second conductive layer to the semiconductor layer. A taper angle of the contact plug in the second material layer is greater than that of the contact plug in the first material layer.
Abstract:
A method of manufacturing a display device includes forming an electrode layer including a first metallic element on a substrate; sequentially forming an insulating layer including a first material and a photosensitive pattern layer including a first pattern on the electrode layer; forming a plurality of fine patterns including a first layer that includes the first material and a second layer by etching the photosensitive pattern layer and the insulating layer; and forming a plurality of scattering bumps by removing the second layer of each of the plurality of fine patterns.
Abstract:
A thin film transistor array substrate includes: a first conductive layer including first lines for transmitting data signals to the thin film transistors; a second conductive layer disposed on the first conductive layer and including second lines for supplying a driving voltage to the thin film transistors; a first insulating layer disposed between a semiconductor layer and the first conductive layer and including a first material layer; a second insulating layer disposed between the first conductive layer and the second conductive layer and including a second material layer having a dielectric constant greater than that of the first material layer; and a contact plug penetrating the second insulating layer and the first insulating layer, and connecting the second conductive layer to the semiconductor layer. A taper angle of the contact plug in the second material layer is greater than that of the contact plug in the first material layer.
Abstract:
A thin film transistor array substrate includes: a first conductive layer including first lines for transmitting data signals to the thin film transistors; a second conductive layer disposed on the first conductive layer and including second lines for supplying a driving voltage to the thin film transistors; a first insulating layer disposed between a semiconductor layer and the first conductive layer and including a first material layer; a second insulating layer disposed between the first conductive layer and the second conductive layer and including a second material layer having a dielectric constant greater than that of the first material layer; and a contact plug penetrating the second insulating layer and the first insulating layer, and connecting the second conductive layer to the semiconductor layer. A taper angle of the contact plug in the second material layer is greater than that of the contact plug in the first material layer.
Abstract:
A semiconductor device including a semiconductor layer, a first electrode, and a second electrode. The semiconductor layer includes a first source region, a first drain region, a second source region, and a second drain region connected to a channel region. The first gate electrode is disposed below the semiconductor layer. The first gate electrode is insulated from the semiconductor layer. The first gate electrode at least partially overlaps the shared channel region. The second gate electrode is disposed above the semiconductor layer. The second gate electrode is insulated by a second gate insulating layer. The second gate electrode at least partially overlaps the channel region.
Abstract:
A thin film transistor includes a substrate, a semiconductor layer, a first insulating layer, and a gate electrode. The gate electrode overlaps the semiconductor layer. The thin film transistor includes a second insulating layer on the gate electrode, and an electrode structure on the second insulating layer. The electrode structure is connected to the gate electrode through a via hole. The thin film transistor includes a source electrode and a drain electrode passing through the first insulating layer and the second insulating layer to be connected to the semiconductor layer. The semiconductor layer includes a channel area overlapping the gate electrode, a source area connected to the source electrode, a drain area connected to the drain electrode, a lightly doped source area, and a lightly doped drain area. The electrode structure overlaps at least one of the lightly doped source area or the lightly doped drain area.
Abstract:
An organic light-emitting display apparatus including a substrate; a thin-film transistor (TFT) arranged on the substrate; a black matrix located between the substrate and the TFT; a pixel electrode, which is located between the substrate and the TFT and having edge portions covered by the black matrix; an insulation layer, which covers the TFT and opens the top surface of the pixel electrode; an organic emission layer, which is arranged on the pixel electrode; and a counter electrode, which is arranged on the organic emission layer.
Abstract:
A thin film transistor array substrate includes: a first conductive layer including first lines for transmitting data signals to the thin film transistors; a second conductive layer disposed on the first conductive layer and including second lines for supplying a driving voltage to the thin film transistors; a first insulating layer disposed between a semiconductor layer and the first conductive layer and including a first material layer; a second insulating layer disposed between the first conductive layer and the second conductive layer and including a second material layer having a dielectric constant greater than that of the first material layer; and a contact plug penetrating the second insulating layer and the first insulating layer, and connecting the second conductive layer to the semiconductor layer. A taper angle of the contact plug in the second material layer is greater than that of the contact plug in the first material layer.
Abstract:
A thin film transistor includes a substrate, a semiconductor layer, a first insulating layer, and a gate electrode. The gate electrode overlaps the semiconductor layer. The thin film transistor includes a second insulating layer on the gate electrode, and an electrode structure on the second insulating layer. The electrode structure is connected to the gate electrode through a via hole. The thin film transistor includes a source electrode and a drain electrode passing through the first insulating layer and the second insulating layer to be connected to the semiconductor layer. The semiconductor layer includes a channel area overlapping the gate electrode, a source area connected to the source electrode, a drain area connected to the drain electrode, a lightly doped source area, and a lightly doped drain area. The electrode structure overlaps at least one of the lightly doped source area or the lightly doped drain area.
Abstract:
An organic light-emitting display apparatus including a substrate; a thin-film transistor (TFT) arranged on the substrate; a black matrix located between the substrate and the TFT; a pixel electrode, which is located between the substrate and the TFT and having edge portions covered by the black matrix; an insulation layer, which covers the TFT and opens the top surface of the pixel electrode; an organic emission layer, which is arranged on the pixel electrode; and a counter electrode, which is arranged on the organic emission layer.