Abstract:
A mirror substrate includes a transparent substrate, a plurality of first mirror patterns arranged on the transparent substrate and spaced apart from each other, each of the first mirror patterns including a phase compensation layer and a first mirror layer sequentially stacked on the transparent substrate, and a second mirror layer disposed on the transparent substrate and between neighboring ones of the first mirror patterns, the second mirror layer having a second thickness less than a first thickness of the first mirror layer.
Abstract:
An organic light emitting diode includes: a first electrode; a second electrode facing the first electrode; a light emission layer between the first electrode and the second electrode; an electron injection layer between the second electrode and the light emission layer; and a buffer layer between the electron injection layer and the second electrode, where the electron injection layer includes a dipolar material and a first metal, and the buffer layer includes a metal having a work function of 4.0 eV or less.
Abstract:
An organic light emitting display apparatus, including a first electrode; a second electrode on the first electrode, the second electrode including silver and magnesium; an organic emission layer between the first electrode and the second electrode; a metal layer between the organic emission layer and the second electrode; and a barrier layer between the organic emission layer and the second electrode.
Abstract:
A mirror substrate includes a transparent substrate, a plurality of first mirror patterns arranged on the transparent substrate and spaced apart from each other, each of the first mirror patterns including a phase compensation layer and a first mirror layer sequentially stacked on the transparent substrate, and a second mirror layer disposed on the transparent substrate and between neighboring ones of the first mirror patterns, the second mirror layer having a second thickness less than a first thickness of the first mirror layer.
Abstract:
Provided is an organic light-emitting display apparatus that includes a substrate; a first electrode on the substrate; an intermediate layer on the first electrode and including an organic emission layer; and a second electrode that includes a first layer including a dipole material, a second layer including a material having a work function of 3.6 eV or less, and a third layer including a conductive material, wherein the first to third layers are sequentially disposed on the intermediate layer.
Abstract:
An organic light emitting diode device includes an emission layer between first and second electrodes, a first auxiliary layer, and a second auxiliary layer. The first electrode includes a silver-magnesium alloy having a greater content of silver than magnesium. The first auxiliary layer is between the first electrode and emission layer, and includes an inorganic material. The second auxiliary layer is between the first electrode and first auxiliary layer, and includes a material having a work function of less than or equal to about 4.0 eV.
Abstract:
An organic light emitting diode (OLED) display is provided. An OLED display in accordance with an exemplary embodiment may include a substrate including a first subpixel, a second subpixel, and a third subpixel, a first electrode disposed on each of the first subpixel, the second subpixel, and the third subpixel, a second electrode facing the first electrode, a first common layer disposed on the first subpixel and the second subpixel, a first emission layer and a second emission layer disposed on the first common layer, a second common layer disposed on the third subpixel, and a third emission layer disposed on the second common layer. The first common layer may include a first doping layer and a second doping layer disposed on the first doping layer. Each of the doping layers may including a p-type dopant, and the second common layer may be formed as a single layer.
Abstract:
A transparent display device includes a substrate having a pixel area and a transmission area, a pixel circuit in the pixel area of the substrate, an insulation structure covering the pixel circuit on the substrate, a first electrode in the pixel area of the substrate and extending at least partially through the insulation structure to be electrically connected to the pixel circuit, a display layer on the first electrode, a second electrode facing the first electrode with respect to the display layer, and a capping layer on the second electrode. The capping layer continuously extends into the pixel area and the transmission area. The capping layer has a thickness in a range from about 350 Å to about 700 Å.
Abstract:
A method of manufacturing a display device is disclosed. In one aspect, a display device comprises a lower substrate, a light-emitting element formed on the lower substrate and comprising a plurality of pixels, an upper substrate disposed on the light-emitting element with a gap therebetween sealed with a sealant. In addition, the device includes a filler filling the gap between the light-emitting element and the upper substrate, and a light-absorbing material formed between the lower substrate and the upper substrate and selectively absorbing light of a certain wavelength range.
Abstract:
An organic light emitting diode includes a first electrode including a first electrode including a reflective metal layer formed of a light-reflective metal, an upper transparent conductive layer positioned on the reflective metal layer, and a protective layer positioned on the upper transparent conductive layer; an organic emission layer positioned on the first electrode; and a second electrode positioned on the organic emission layer, wherein the upper transparent conductive layer is amorphous.