Abstract:
A display device includes a substrate, a first transistor including a first active layer disposed on the substrate and a first gate electrode disposed on the first active layer, and a first gate insulating layer disposed between the first active layer and the first gate electrode. The first active layer includes an oxide semiconductor containing indium (In) at a content range of about 40 at % to about 54 at %, and the first gate insulating layer has an emission amount range of oxygen (O2) of about 2.48E+19 Molec./cm3 to about 2.76E+19 Molec./cm3, or an emission amount range of nitrogen monoxide (NO) of about 1.04E+20 Molec./cm3 to about 1.15E+20 Molec./cm3 under heat treatment conditions performed at a temperature range of about 50° C. to about 550° C.
Abstract:
A display device includes: a first electrode and a second electrode spaced from the first electrode; a first insulating layer on the first electrode and the second electrode; a plurality of light emitting elements on the first insulating layer and on the first electrode and the second electrode; a first connection electrode on the first electrode and contacting the plurality of light emitting elements; and a second connection electrode on the second electrode and contacting the plurality of light emitting elements, wherein each of the first electrode and the second electrode includes a first metal layer and a second metal layer on the first metal layer and including a different material from the first metal layer, a thickness of the first metal layer is between 100 Å to 300 Å, and a thickness of each of the first electrode and the second electrode is 2600 Å or less.
Abstract:
A display device may include a first gate electrode disposed on a substrate, a buffer layer disposed on the first gate electrode, a first active pattern on the buffer layer, the first active pattern overlapping the first gate electrode and including an oxide semiconductor, a second active pattern on the buffer layer, spaced apart from the first active pattern, and including an oxide semiconductor, the second active pattern including a channel region, and a source region and a drain region, a source pattern and a drain pattern respectively at ends of the first active pattern, a first insulation pattern disposed on the first active pattern, a second insulation pattern disposed on the channel region, a first oxygen supply pattern on the first insulation pattern, a second oxygen supply pattern on the second insulation pattern, and a second gate electrode on the second oxygen supply pattern.
Abstract:
A thin film transistor substrate includes a substrate, a bottom gate on the substrate, a first insulating layer on the substrate and on the bottom gate, a drain on the first insulating layer, a source on the first insulating layer, the source including a first source at a first side of the drain and a second source at a second side of the drain, an active layer on the first insulating layer, the active layer including a first active layer contacting the drain and the first source and a second active layer contacting the drain and the second source, a second insulating layer on the drain, the source, and the active layer, and a top gate on the second insulating layer.
Abstract:
A display device according to an embodiment includes a light blocking layer disposed on a substrate; an oxygen supply layer disposed on and contacting the light blocking layer; a semiconductor layer disposed on the oxygen supply layer; and a light emitting diode electrically connected with the semiconductor layer. The semiconductor layer includes an oxide semiconductor, and the oxygen supply layer includes a metal oxide that includes at least one of indium, zinc, gallium, and tin.
Abstract:
An organic light emitting diode display according to an exemplary embodiment includes: a substrate; a first buffer layer on the substrate; a first semiconductor layer on the first buffer layer; a first gate insulating layer on the first semiconductor layer; a first gate electrode and a blocking layer on the first gate insulating layer; a second buffer layer on the first gate electrode; a second semiconductor layer on the second buffer layer; a second gate insulating layer on the second semiconductor layer; and a second gate electrode on the second gate insulating layer.
Abstract:
A display device includes first banks on a substrate and spaced apart from each other, a first electrode and a second electrode on the first banks and spaced apart from each other, a first insulating layer on the first electrode and the second electrode, and light emitting elements on the first insulating layer and each having ends on the first electrode and the second electrode. Each of the first banks includes a first pattern portion including concave portions and convex portions. The first pattern portions of the first banks are disposed on side surfaces of the first banks. The side surfaces are spaced apart and face each other. Each of the first electrode and the second electrode includes a second pattern portion on the first pattern portion and having a pattern shape corresponding to the first pattern portion on a surface thereof.
Abstract:
A display device includes a substrate, a first conductive layer on the substrate and including a lower light blocking pattern and a first signal line, a buffer layer on the first conductive layer, a semiconductor layer on the buffer layer and including a first semiconductor pattern and a second semiconductor pattern separated from the first semiconductor pattern, an insulating layer on the semiconductor layer and including an insulating layer pattern, a second conductive layer on the insulating layer and including a second signal line, a planarization layer on the second conductive layer, and a third conductive layer on the planarization layer and including an anode electrode. The first semiconductor pattern is electrically connected to the lower light blocking pattern by the anode electrode, and at least a portion of the second semiconductor pattern is isolated from and overlaps each of the first signal line and the second signal line.
Abstract:
A display device, includes: a pixel connected to a scan line and a data line crossing the scan line, wherein the pixel includes a light emitting element, a driving transistor configured to control a driving current supplied to the light emitting element according to a data voltage received from the data line, and a first switching transistor configured to apply the data voltage of the data line to the driving transistor according to a scan signal applied to the scan line; wherein the driving transistor includes a first active layer including an oxide semiconductor and a first oxide layer on the first active layer and including an oxide semiconductor; and wherein the first switching transistor includes a second active layer on the first active layer and including the same oxide semiconductor as the first oxide layer.
Abstract:
A thin film transistor display panel including: a first insulating substrate; a first semiconductor disposed between the first insulating substrate and a first gate insulating layer; a gate electrode disposed on the first gate insulating layer, the gate electrode overlapping the first semiconductor; a second gate insulating layer disposed on the gate electrode; a second semiconductor disposed on the second gate insulating layer, the second semiconductor overlapping the gate electrode; an interlayer insulating layer disposed on the second semiconductor; and a source electrode and a drain electrode disposed on the interlayer insulating layer spaced apart from each other, the source electrode and the drain electrode connected to the first semiconductor and the second semiconductor.