Abstract:
A head-mounted display device includes a display panel and an optical system positioned on a front surface of the display panel, wherein the display panel sequentially includes a light emitting element unit, a retarder positioned on a front surface of the light emitting element unit, a reflective polarizer, and an absorptive polarizer, wherein the optical system includes a first curved lens configured to include a first retarder positioned on an inner surface and a beam splitter positioned on an outer surface and a second curved lens configured to include a second retarder positioned on an inner surface and a reflective polarizer positioned on an outer surface, wherein the first curved lens is positioned on the display panel, and the second curved lens is positioned on the first curved lens, and wherein the absorptive polarizer of the display panel includes an open portion from which the absorptive polarizer is removed.
Abstract:
A display device includes a display panel, an actuator unit including a plurality of actuator members generating vibrations and disposed to face one side of the display panel, and a support unit contacting the actuator unit to receive a vibration generating from the actuator unit and including a plurality of support members disposed to respectively correspond to the plurality of actuator members and spaced apart from each other.
Abstract:
A display device includes a display unit which displays an image in a bent state and including a plurality of display surfaces divided from each other by a bending position thereof, a bend-measuring unit including a sensor which measures a bending value of the display unit, a viewpoint-monitoring unit including a sensor which measures a viewing position of a viewer, where the viewing point-monitoring unit outputs position information based on the viewing position of the viewer, a control unit which compensates image data to be displayed on each of the display surfaces, based on the bending value and the position information, and a driving unit which drives the display unit using the compensated image data.
Abstract:
A display device includes a base substrate including a first folding portion, a first portion, and a second portion, a display element layer including first display elements, which are disposed on the first portion to emit a first light, and second display elements, which are disposed on the second portion to emit a second light, and a light control layer including a first region, which is disposed on the second portion and causes a first diffraction of the second light emitted from the second display elements, a second region, which guides the second light provided from the first region, and a third region, which is spaced apart from the first region with the second region interposed therebetween and emits the second light to an outside through a second diffraction of the second light.
Abstract:
A head mount display device, includes: a display panel; and an optical system positioned in front of the display panel. The display panel sequentially includes a light emitting element part, a third retarder, a reflective polarizer, and an absorptive polarizer, where the third retarder is positioned in front of the light emitting element part; and the optical system includes: a first curved lens, which is positioned to face the display panel, and includes a first retarder positioned on a first surface facing the display panel and a beam splitter positioned on a second surface thereof opposite to the first surface; and a second curved lens, which is positioned to face the beam splitter, and includes a second retarder positioned a first surface thereof facing the beam splitter and a second reflective polarizer positioned on a second surface thereof opposite to the first surface of the second curved lens.
Abstract:
A display device includes a display part including a plurality of pixels; a lens part disposed on the display part; and a plurality of optical devices overlapping an edge of the display part in a plan view and disposed at an edge of the lens part, wherein light from the outside of the display part is incident on the plurality of optical devices.
Abstract:
A hologram display device includes a light source unit, a light guide plate, a spatial light modulator, a sensing unit, and a light source driving unit. The light source unit includes a plurality of light sources and emits light when at least one of the plurality of light sources is turned on. The light guide plate converts the light emitted thereto from the light source unit to a planar light beam. The spatial light modulator spatially modulates the planar light beam to produce a hologram image. The sensing unit senses a position of a user watching the hologram image, and the light source driving unit turns on the at least one of the plurality of light sources, based on information on the position of the user obtained by the sensing unit.
Abstract:
A hologram display device includes a light generator generating light, a spatial light modulator forming an interference pattern to interfere with the light, and a controller providing interference data to the spatial light modulator to form the interference pattern. The spatial light modulator includes a first area in which pixels are arranged in a first pattern, and a second area in which pixels are arranged in a second pattern. The controller includes a data generator generating first interference data for the first area and second interference data for the second area, a compensator generating first correction data based on the first interference data and second correction data by correcting the second interference data, and an output unit generating the interference data based on the first correction data and the second correction data.
Abstract:
A hologram display device includes a light source unit, a light guide plate, a spatial light modulator, a sensing unit, and a light source driving unit. The light source unit includes a plurality of light sources and emits light when at least one of the plurality of light sources is turned on. The light guide plate converts the light emitted thereto from the light source unit to a planar light beam. The spatial light modulator spatially modulates the planar light beam to produce a hologram image. The sensing unit senses a position of a user watching the hologram image, and the light source driving unit turns on the at least one of the plurality of light sources, based on information on the position of the user obtained by the sensing unit.