Abstract:
A cell cutting device that cuts a mother substrate for display devices includes a fixing unit configured to move in a state where the mother substrate for display devices is fixed on the fixing unit, a cutter configured to perform a cutting process on the mother substrate for display devices and the cutter faces a surface of the mother substrate during the cutting process, a cutter driving unit driving the cutter in a state where the cutter is fixed thereon, and a buffer member arranged on another surface of the mother substrate to correspond to the cutter. The other surface is opposite the surface facing the cutter.
Abstract:
A carrier substrate removing apparatus configured to separate a flexible substrate bonded to a carrier substrate includes a carrier substrate holding unit configured to hold the carrier substrate separated from the flexible substrate; an inclined separation unit configured, with the carrier substrate holding unit, to separate the flexible substrate from the carrier substrate and to transport the flexible substrate at an angle; and a transmittance measuring unit configured to measure a transmittance of the separated carrier substrate.
Abstract:
A carrier substrate removing apparatus configured to separate a flexible substrate bonded to a carrier substrate includes a carrier substrate holding unit configured to hold the carrier substrate separated from the flexible substrate; an inclined separation unit configured, with the carrier substrate holding unit, to separate the flexible substrate from the carrier substrate and to transport the flexible substrate at an angle; and a transmittance measuring unit configured to measure a transmittance of the separated carrier substrate.
Abstract:
A method for inspecting a polysilicon layer includes: radiating excitation light to the polysilicon layer; and detecting a photoluminescence signal generated by the excitation light, wherein average power of the excitation light has a range of 1 W/cm2 to 10 W/cm2, and peak power of the excitation light has a range of 100 W/cm2 to 1000 W/cm2.
Abstract translation:一种用于检查多晶硅层的方法包括:向多晶硅层辐射激发光; 并且检测由激发光产生的光致发光信号,其中激发光的平均功率具有1W / cm 2至10W / cm 2的范围,并且激发光的峰值功率具有100W / cm 2至1000W的范围 / cm2。
Abstract:
A method of measuring conductivity of a silicon thin film is provided. By the method, a capacitive sensor is positioned over a silicon thin film sample with an air-gap between the sensor and the sample, a size of the air-gap is measured using the capacitive sensor while an excitation light source module is turned off, an excitation light is illuminated on the silicon thin film sample by turning on the excitation light source module, where the excitation light is an ultraviolet light, a conductivity change of the silicon thin film sample is measured using the capacitive sensor, and a measurement error due to a deviation of the air-gap is eliminated by normalizing the conductivity change based on a measurement result of the size of the air-gap.
Abstract:
A method of measuring conductivity of a silicon thin film is provided. By the method, a capacitive sensor is positioned over a silicon thin film sample with an air-gap between the sensor and the sample, a size of the air-gap is measured using the capacitive sensor while an excitation light source module is turned off, an excitation light is illuminated on the silicon thin film sample by turning on the excitation light source module, where the excitation light is an ultraviolet light, a conductivity change of the silicon thin film sample is measured using the capacitive sensor, and a measurement error due to a deviation of the air-gap is eliminated by normalizing the conductivity change based on a measurement result of the size of the air-gap.