Abstract:
An organic light-emitting display apparatus including: a substrate; a plurality of pixels that are formed on the substrate and each have a light emission area from which visible rays are emitted and a transmission area through which external light is transmitted; a pixel circuit portion disposed in each light emission area of the plurality of pixels; a first electrode that is disposed in each light emission area and is electrically connected to the pixel circuit portion; an intermediate layer that is formed on the first electrode and includes an organic emissive layer; a second electrode formed on the intermediate layer; and a capping layer that is disposed on the second electrode and includes a first capping layer corresponding to the light emission area and a second capping layer corresponding to the transmission area. Accordingly, electrical characteristics and image quality of the organic light-emitting display apparatus may be improved.
Abstract:
An OLED device and a method of manufacturing the same, the OLED device including a substrate having a pixel area and a transmission area; a pixel circuit on the pixel area; a first electrode on the pixel area and being electrically connected to the pixel circuit; a first organic layer extending continuously on the pixel area and the transmission area and covering the first electrode; an emitting layer selectively on a portion of the first organic layer on the pixel area; a second organic layer extending continuously on the pixel and transmission areas and covering the emitting layer; and a third organic layer selectively on the transmission area, the third organic layer including a non-emitting material that has a different transmittance from that of the emitting layer; and a second electrode extending continuously on the pixel area and the transmission area and covering the second and third organic layers.
Abstract:
In a method of manufacturing a transparent display device, a substrate including a pixel region and a transmission region may be provided. A first electrode may be formed on the substrate in the pixel region, and a display layer may be formed on the first electrode. A second electrode facing the first electrode may be formed on the display layer, and a capping structure including a first capping layer and a second capping layer may be formed on the second electrode. The first capping layer may be formed on the second electrode in the pixel region and a first region of the transmission region by using a mask that has an opening, the mask may be shifted, and the second capping layer may be formed on the second electrode in the pixel region and a second region of the transmission region by using the shifted mask.
Abstract:
An organic light-emitting display apparatus including: a substrate; a plurality of pixels that are formed on the substrate and each have a light emission area from which visible rays are emitted and a transmission area through which external light is transmitted; a pixel circuit portion disposed in each light emission area of the plurality of pixels; a first electrode that is disposed in each light emission area and is electrically connected to the pixel circuit portion; an intermediate layer that is formed on the first electrode and includes an organic emissive layer; a second electrode formed on the intermediate layer; and a capping layer that is disposed on the second electrode and includes a first capping layer corresponding to the light emission area and a second capping layer corresponding to the transmission area. Accordingly, electrical characteristics and image quality of the organic light-emitting display apparatus may be improved.
Abstract:
An OLED device and a method of manufacturing the same, the OLED device including a substrate having a pixel area and a transmission area; a pixel circuit on the pixel area; a first electrode on the pixel area and being electrically connected to the pixel circuit; a first organic layer extending continuously on the pixel area and the transmission area and covering the first electrode; an emitting layer selectively on a portion of the first organic layer on the pixel area; a second organic layer extending continuously on the pixel and transmission areas and covering the emitting layer; and a third organic layer selectively on the transmission area, the third organic layer including a non-emitting material that has a different transmittance from that of the emitting layer; and a second electrode extending continuously on the pixel area and the transmission area and covering the second and third organic layers.
Abstract:
In a method of manufacturing a transparent display device, a substrate including a pixel region and a transmission region may be provided. A first electrode may be formed on the substrate in the pixel region, and a display layer may be formed on the first electrode. A second electrode facing the first electrode may be formed on the display layer, and a capping structure including a first capping layer and a second capping layer may be formed on the second electrode. The first capping layer may be formed on the second electrode in the pixel region and a first region of the transmission region by using a mask that has an opening, the mask may be shifted, and the second capping layer may be formed on the second electrode in the pixel region and a second region of the transmission region by using the shifted mask.
Abstract:
An organic light emitting display and a method of manufacturing the same. The organic light-emitting display is a transparent display where one can see through the display to view an image on the other side of the display. Each pixel of the display has a first region that includes an organic light emitting diode and a thin film transistor, and a larger second region that is transparent. The second region is made of either transparent layers or ultra-thin layers so that light is not blocked. A second electrode of the display may include magnesium and may be produced by a selective deposition process, so that use of a fine metal mask may be avoided.
Abstract:
An organic light emitting display device including: a first emission area including a first organic light emitting diode; a second emission area arranged adjacent to the first emission area and not overlapping with the first emission area, the second emission area including a second organic light emitting diode; a pixel circuit unit electrically connected to the first organic light emitting diode and the second organic light emitting diode; and a transmissive area adjacent to the first and second emission areas and not overlapping with the first and second emission areas, the transmissive area configured to transmit external light therethrough.
Abstract:
An organic light-emitting display apparatus including: a substrate; a plurality of pixels that are formed on the substrate and each have a light emission area from which visible rays are emitted and a transmission area through which external light is transmitted; a pixel circuit portion disposed in each light emission area of the plurality of pixels; a first electrode that is disposed in each light emission area and is electrically connected to the pixel circuit portion; an intermediate layer that is formed on the first electrode and includes an organic emissive layer; a second electrode formed on the intermediate layer; and a capping layer that is disposed on the second electrode and includes a first capping layer corresponding to the light emission area and a second capping layer corresponding to the transmission area. Accordingly, electrical characteristics and image quality of the organic light-emitting display apparatus may be improved.
Abstract:
An organic light-emitting display apparatus includes: a substrate; pixels defined on the substrate, where each pixel includes a first region including a light-emitting region and a second region including a transmission region; a third region defined on the substrate disposed between the pixels; first electrodes disposed in the pixels on the substrate, respectively, where each first electrode is disposed in the first region of a corresponding pixel; an organic emission layer disposed to cover the first electrodes; a first auxiliary layer disposed on the organic emission layer in the second region and which exposes the first region; a second electrode disposed on the organic emission layer in the first region; a second auxiliary layer disposed in the first and second regions and which exposes the third region; and a third electrode disposed in the third region and in contact with the second electrode.