Abstract:
An electronic device includes a light source member configured to provide a first light, a color conversion member disposed on the light source member and including a first conversion material that converts the first light into a second light and a second conversion material that converts the first light into a third light, and a low-refractive index layer disposed on the light source member and disposed on at least one of upper and lower portions of the color conversion member. The low-refractive index layer includes a matrix part, a plurality of hollow inorganic particles dispersed in the matrix part, and a plurality of void parts defined by the matrix part.
Abstract:
A display apparatus includes a display panel and a display panel driver. The display panel includes a first substrate and a second substrate facing the first substrate, wherein the first substrate includes a switching element, a data line and a gate line, wherein the data line and the gate line are electrically connected to the switching element. The display panel driver includes a data driving chip and a gate driving chip, wherein the data driving chip applies a data signal to the data line and the gate driving chip applies a gate signal to the gate line, wherein the gate driving chip is disposed on a surface of the data driving chip.
Abstract:
A display panel includes an array substrate, an opposite substrate facing the array substrate, and a liquid crystal layer disposed between the array substrate and the opposite substrate. The array substrate includes a display area and a non-display area surrounding the display area, and the non-display area includes a first non-display area disposed adjacent to a side portion of the display area and a second non-display area other than the first non-display area. The first non-display area overlaps the opposite substrate. The array substrate and the opposite substrate have the same or substantially the same area and a wire member is disposed under the array substrate to be connected to an external circuit module. Accordingly, the display panel does not need an extra space for the wire member, and thus the non-display area is reduced.
Abstract:
A display panel includes an array substrate, an opposite substrate facing the array substrate, and a liquid crystal layer disposed between the array substrate and the opposite substrate. The array substrate includes a display area and a non-display area surrounding the display area, and the non-display area includes a first non-display area disposed adjacent to a side portion of the display area and a second non-display area other than the first non-display area. The first non-display area overlaps the opposite substrate. The array substrate and the opposite substrate have the same or substantially the same area and a wire member is disposed under the array substrate to be connected to an external circuit module. Accordingly, the display panel does not need an extra space for the wire member, and thus the non-display area is reduced.
Abstract:
A photo-alignment composition includes a compound comprising a repeat unit represented by Chemical Formula 1 and a solvent. The photo-alignment composition is coated on a first substrate and a second substrate facing the first substrate, thus forming alignment layers. A liquid crystal layer is formed between the first substrate and the second substrate. The photo-alignment composition includes a compound structure having a high decomposition rate and a functional group capable of a hydrogen bond, which is weaker than a covalent bond. Thus, a hardness of the alignment layer may be improved at a room temperature, and a hydrogen bonding functional group of the photo-alignment composition may be decomposed at a high temperature thus photo-aligning the alignment layer. Therefore, an afterimage of a screen may decrease, and a hardness of the alignment layer may increase.
Abstract:
A display apparatus includes a display panel and a display panel driver. The display panel includes a first substrate and a second substrate facing the first substrate, wherein the first substrate includes a switching element, a data line and a gate line, wherein the data line and the gate line are electrically connected to the switching element. The display panel driver includes a data driving chip and a gate driving chip, wherein the data driving chip applies a data signal to the data line and the gate driving chip applies a gate signal to the gate line, wherein the gate driving chip is disposed on a surface of the data driving chip.
Abstract:
Provided is a liquid crystal display, including: a first substrate; a first electrode and a second electrode disposed on the first substrate and overlapping with each other with a first insulating layer therebetween; a second insulating layer disposed on the first substrate and having an opening; a second substrate facing the first substrate; a first alignment layer disposed on the first substrate; a second alignment layer disposed on the second substrate; and a spacer disposed between the first alignment layer and the second alignment layer, in which the spacer is positioned in the opening.
Abstract:
An organic light emitting diode (OLED) display includes a substrate, a thin film transistor on the substrate, an organic light emitting diode on the thin film transistor, and including a first electrode connected with the thin film transistor, and a black organic layer between the thin film transistor and the first electrode, and including a black protrusion spaced from the first electrode.
Abstract:
A photoalignment agent includes: a copolymer obtained from at least one of cyclobutane dianhydride (CBDA) and a cyclobutane dianhydride derivative, and a diamine; and a cross-linking agent including an alkylene group —CnH2n—, n being a natural number.
Abstract:
A liquid crystal display includes: a signal controller configured to receive an input image signal corresponding to a gray from the outside, and an image signal corrector configured to correct the input image signal. The image signal corrector is configured to shift a first input image signal value corresponding to a black gray by a first value based on a common voltage, is configured to shift a second input image signal value corresponding to a halftone gray by a second value based on the common voltage, and is configured to shift a third input image signal value corresponding to a white gray by a third value based on the common voltage. The first value and the second value are larger than a kickback voltage of each of the black gray and the halftone gray, and the third value is the same as a kickback voltage of the white gray.