Abstract:
A display substrate includes a switching element disposed in a display region that is electrically connected to a gate line, a data line, and a first electrode in a peripheral region adjacent to the display region that includes a first conductive pattern formed from a first conductive layer that includes a same material as the gate line, a first line connecting part disposed in the peripheral region that includes the first conductive pattern, a second conductive pattern that overlaps the first conductive pattern and formed, an organic layer that partially exposes the second conductive pattern, and a third conductive pattern electrically connected to the second conductive pattern that contacts the partially exposed second conductive pattern, and a fourth conductive pattern that electrically connects the first conductive pattern of the pad part and the third conductive pattern of the first line connecting part.
Abstract:
A display substrate includes a base substrate including a display area in which signal lines and pixels are arranged and a peripheral area surrounding the display area, pads disposed in the peripheral area and receiving an electrical signal, fan-out lines connecting the pads and the signal lines, and static electricity breakup circuits comprising a breakup line that crosses the fan-out lines, and static electricity prevention circuits respectively connected to the fan-out lines. Parts of the static electricity prevention circuits are connected to adjacent fan-out lines and are commonly connected to the one of the breakup lines through a common contact part.
Abstract:
A gate circuit according to an exemplary embodiment of the present inventive concept comprises a plurality of stages, each receiving a clock signal and outputting a gate signal and a carry signal. One of the plurality of stages includes a first transistor of which a first terminal and a control terminal are connected to each other and a carry signal of a stage before previous stage is input to the first terminal and the control terminal and a second transistor of which a gate signal of the previous stage is input to a first terminal, a control terminal is connected with a second terminal of the first transistor, and an output terminal is connected to a first node.
Abstract:
A coupling compensator for a display panel and a display device including the coupling compensator are disclosed. In one aspect, the coupling compensator includes a memory configured to receive grayscale data and store the grayscale data and a first data converter configured to convert the grayscale data to a plurality of grayscale data voltages including first and second grayscale data voltages. The compensator also includes a coupling voltage calculator configured to calculate a line coupling voltage generated on a data line based on the difference between the first grayscale data voltage corresponding to the grayscale data provided to a first group of the pixels in an (N−1)th row and the second grayscale data voltage corresponding to the grayscale data provided to a first group of the pixels in an Nth row, where the N is an integer equal to or greater than 2.
Abstract:
A stage circuit includes a first driver, a second driver, a first output unit, a second output unit and a controller. The first driver controls voltages of first and second nodes, according to a first power source, a third power source, a start signal or a carry signal of a previous stage input to a first input terminal, and a clock signal supplied to a second input terminal. The second driver controls voltages of third and fourth nodes, according to voltages of the first power source, the third power source, the first input terminal and the first and second nodes. The first output unit outputs a carry signal to a first output terminal, according to voltages of the first power source, the second input terminal and the third and fourth nodes. The second output unit outputs a scan signal to a second output terminal, according to voltages of the second power source, the second input terminal and the third and fourth nodes. The controller is electrically coupled to the first output terminal and the second driver.
Abstract:
A coupling compensator for a display panel and a display device including the coupling compensator are disclosed. In one aspect, the coupling compensator includes a memory configured to receive grayscale data and store the grayscale data and a first data converter configured to convert the grayscale data to a plurality of grayscale data voltages including first and second grayscale data voltages. The compensator also includes a coupling voltage calculator configured to calculate a line coupling voltage generated on a data line based on the difference between the first grayscale data voltage corresponding to the grayscale data provided to a first group of the pixels in an (N−1)th row and the second grayscale data voltage corresponding to the grayscale data provided to a first group of the pixels in an Nth row, where the N is an integer equal to or greater than 2.
Abstract:
A gate driving circuit and a display apparatus having the gate driving circuit, in which the gate driving circuit includes a voltage adjusting part using a low clock signal to increase the reliability of the gate driving circuit, thereby extending the lifetime of the gate driving circuit.
Abstract:
A display device includes a first pixel circuit, a first scan signal line disposed at a side of the first pixel circuit, extending in a first direction, and transmitting a scan signal; a second pixel circuit disposed at an outermost side of the display device, and a first dummy wire disposed at an outside of the second pixel circuit and extending in the first direction. A width of the first dummy wire is less than a width of the first scan signal line.
Abstract:
A gate driving circuit includes: a pull-up controller applying a carry signal of one of previous stages to a first node in response to the carry signal of the one of the previous stages; a pull-up part outputting a clock signal as an N-th gate output signal; a carry part outputting the clock signal as an N-th carry signal; a first pull-down part pulling down the signal at the first node to a second off voltage; a second pull-down part pulling down the N-th gate output signal to a first off voltage; an inverting part generating an inverting signal based on the clock signal and the second off voltage to output the inverting signal to an inverting node; and a reset part outputting a reset signal to the inverting node.
Abstract:
A gate driving circuit includes: a pull-up controller applying a carry signal of one of previous stages to a first node in response to the carry signal of the one of the previous stages; a pull-up part outputting a clock signal as an N-th gate output signal; a carry part outputting the clock signal as an N-th carry signal; a first pull-down part pulling down the signal at the first node to a second off voltage; a second pull-down part pulling down the N-th gate output signal to a first off voltage; an inverting part generating an inverting signal based on the clock signal and the second off voltage to output the inverting signal to an inverting node; and a reset part outputting a reset signal to the inverting node.