Abstract:
A display device includes a display panel including a plurality of pixels, a scan driving unit configured to provide a scan signal to the pixels, a data driving unit configured to provide a data signal to the pixels, and a controller configured to provide driving frequency information to a processor, which transfers image data with a driving frequency determined based on the driving frequency information to the display device, to receive the image data with the driving frequency from the processor, and to control the scan driving unit and the data driving unit to drive the display panel with the driving frequency.
Abstract:
A display device includes a substrate including a display area and a non-display area, a plurality of pixels disposed in the display area, a common voltage supply wiring overlapping the non-display area and disposed on the substrate, a driving voltage supply wiring overlapping the non-display area and disposed on the substrate, and a data voltage supply wiring overlapping the non-display area and electrically connected to the plurality of pixels, where at least one of the common voltage supply wiring and the driving voltage supply wiring includes a chamfered area, the data voltage supply wiring includes a first data voltage supply wiring, a second data voltage supply wiring, and a third data voltage supply wiring, and the first to third data voltage supply wirings are disposed in different layers.
Abstract:
A liquid crystal display includes: a substrate; a gate line disposed on the substrate; a storage voltage line disposed on the substrate and extending substantially parallel to the gate line; a data line disposed on the substrate; a reference voltage line disposed on the substrate and extending substantially parallel to the data line; first and second subpixel electrodes disposed in a pixel area; a first switching element connected to the gate line, the data line, and the first subpixel electrode; a second switching element connected to the gate line, the data line, and the second subpixel electrode; and a third switching element connected to the second subpixel electrode and the reference voltage line, wherein the storage voltage line and the reference voltage line are not connected to each other.
Abstract:
Images that are to be displayed by a backlighted LCD device or by another form of source-lit display device may include a brightness increasing level of included white or other ambient light. Rather than supplying all of such brightness increasing level of included white or other ambient light from the lighting source (e.g., backlighting unit) of the source-lit display device, a 3D providing set of shutter glasses are operated so as to extend their open times beyond a limited duration when the lighting source (e.g., backlighting unit) is providing light and to thus include in the image perceived by the user a proportional amount of ambient light that is directed to and through the shutter glasses during the extended opening time. In one embodiment, a timing control part determines an average grayscale value for each to be displayed image from the received image data and the timing control part correspondingly controls an open time for simultaneously opening the left eye shutter part and the right eye shutter part of the shutter glasses according to the determined average grayscale value of the image data.
Abstract:
A display device includes a display panel including a plurality of pixels, a scan driving unit configured to provide a scan signal to the pixels, a data driving unit configured to provide a data signal to the pixels, and a controller configured to provide driving frequency information to a processor, which transfers image data with a driving frequency determined based on the driving frequency information to the display device, to receive the image data with the driving frequency from the processor, and to control the scan driving unit and the data driving unit to drive the display panel with the driving frequency.
Abstract:
Provided is a display device, which includes: a reference voltage line formed along a circular outer line and configured to provide a reference voltage; a first reference voltage auxiliary line electrically connected to the reference voltage line and formed to be parallel with a predetermined interval; and a conductive line forming a contact with the reference voltage line and the first reference voltage auxiliary line and configured to provide the reference voltage to a cathode.
Abstract:
A display device includes a display panel including a plurality of pixels, a scan driving unit configured to provide a scan signal to the pixels, a data driving unit configured to provide a data signal to the pixels, and a controller configured to provide driving frequency information to a processor, which transfers image data with a driving frequency determined based on the driving frequency information to the display device, to receive the image data with the driving frequency from the processor, and to control the scan driving unit and the data driving unit to drive the display panel with the driving frequency.
Abstract:
A display device includes a display panel including a plurality of pixels, a scan driving unit configured to provide a scan signal to the pixels, a data driving unit configured to provide a data signal to the pixels, and a controller configured to provide driving frequency information to a processor, which transfers image data with a driving frequency determined based on the driving frequency information to the display device, to receive the image data with the driving frequency from the processor, and to control the scan driving unit and the data driving unit to drive the display panel with the driving frequency.