Abstract:
Provided is a display device comprising a display panel, an input sensor including a first sensing area having a first sub-area and a second sub-area, and a first sensor controller configured to drive the first sensing area. Here, the input sensor includes first sensing electrodes disposed in the first sub-area to receive a first transmission signal from the first sensor controller, second sensing electrodes disposed in the first sub-area and intersected with the first sensing electrodes, third sensing electrodes disposed in the second sub-area to receive a second transmission signal having a phase inverted from that of the first transmission signal from the first sensor controller, and fourth sensing electrodes disposed in the second sub-area and intersected with the third sensing electrodes.
Abstract:
A display device includes a display panel and an input sensing panel. The input sensing panel includes pluralities of first and second sensing electrodes and electrostatic induction patterns, each of which is connected to a sensing electrode from one of the pluralities of sensing electrodes and overlaps another sensing electrode from the other one of the pluralities of sensing electrodes. The input sensing panel includes a first area where deviations of mutual capacitances between the first and second sensing electrodes are small and a second area where the deviations are large. The electrostatic induction patterns include first electrostatic induction patterns disposed in the first area and second electrostatic induction patterns disposed in the second area, the second electrostatic induction patterns having a different area from the first electrostatic induction patterns, or the number of second electrostatic induction patterns being different from the number of first electrostatic induction patterns.
Abstract:
A circuit board includes a base substrate, and a connection structure disposed on the base substrate, and connected to the base substrate by an accessing part. The connection structure includes a first connection electrode, a second connection electrode disposed in a same layer as the first connection electrode, a third connection electrode connected to the first connection electrode on the first connection electrode, and a fourth connection electrode connected to the second connection electrode on the second connection electrode, and disposed in a same layer as the third connection electrode.
Abstract:
An electronic device includes a display panel, an input sensor disposed on the display panel and including a sensing electrode, a first signal line connected to the sensing electrode, and a second signal line connected to the sensing electrode, and a circuit board electrically connected to the input sensor. The circuit board includes a first group signal line electrically connected to the first signal line, a second group signal line electrically connected to the first group signal line and to the second signal line, a first inspection signal line electrically connected to the first group signal line, and a second inspection signal line electrically connected to the second group signal line.
Abstract:
An LCD device includes first and second substrates and a liquid crystal layer disposed between the substrates. A gate transmitting member is disposed on the first substrate. The gate transmitting member includes a gate line and a gate electrode. A data transmitting member is disposed on the first substrate. The data transmitting member includes a data line, a source electrode, and a drain electrode. A pixel electrode is disposed in a pixel area. The pixel electrode is connected to the source electrode. A first gate insulating layer is disposed on the gate transmitting member. The first gate insulating layer has substantially a same shape as the gate transmitting member and has a greater size than a size of the gate transmitting member. A semiconductor layer is disposed on the first gate insulating layer. The semiconductor layer overlaps the gate electrode, the source electrode, and the drain electrode.
Abstract:
Provided is a display device comprising a display panel, an input sensor including a first sensing area having a first sub-area and a second sub-area, and a first sensor controller configured to drive the first sensing area. Here, the input sensor includes first sensing electrodes disposed in the first sub-area to receive a first transmission signal from the first sensor controller, second sensing electrodes disposed in the first sub-area and intersected with the first sensing electrodes, third sensing electrodes disposed in the second sub-area to receive a second transmission signal having a phase inverted from that of the first transmission signal from the first sensor controller, and fourth sensing electrodes disposed in the second sub-area and intersected with the third sensing electrodes.
Abstract:
A display device includes a display panel that displays an image, an input sensor that senses an external input, and a sensing controller that controls the driving of the input sensor. The input sensor includes a plurality of scanning electrodes and a plurality of sensing electrodes. The sensing controller simultaneously transmits input scanning signals to at least two scanning electrodes of the plurality of scanning electrodes during a group scanning period. The group scanning period includes a plurality of scanning periods. The sensing controller transmits a compensating signal having a phase different from a phase of at least one of the input scanning signals to at least one sensing electrode of the plurality of sensing electrodes during at least one scanning period of the plurality of scanning periods.
Abstract:
An LCD device includes first and second substrates and a liquid crystal layer disposed between the substrates. A gate transmitting member is disposed on the first substrate. The gate transmitting member includes a gate line and a gate electrode. A data transmitting member is disposed on the first substrate. The data transmitting member includes a data line, a source electrode, and a drain electrode. A pixel electrode is disposed in a pixel area. The pixel electrode is connected to the source electrode. A first gate insulating layer is disposed on the gate transmitting member. The first gate insulating layer has substantially a same shape as the gate transmitting member and has a greater size than a size of the gate transmitting member. A semiconductor layer is disposed on the first gate insulating layer. The semiconductor layer overlaps the gate electrode, the source electrode, and the drain electrode.