Abstract:
An organic light emitting diode display including: a display panel; a first retarder on the display panel and including a first reactive liquid crystal; a second retarder on the first retarder and including a second reactive liquid crystal; and a polarizer on the second retarder, wherein a first optical axis of the first reactive liquid crystal is inclined by 2θ+45° relative to an absorption axis of the polarizer, and a second optical axis of the second reactive liquid crystal is inclined by θ relative to the absorption axis of the polarizer.
Abstract:
An optical unit of embodiments of the present disclosure includes a phase difference layer including a UV absorbent, and a linear polarization layer on the phase difference layer. The phase difference layer may further includes a base film, a liquid crystal layer, and an overcoat layer on the liquid crystal layer. The resulting optical unit and the organic light emitting display including the same may have improved polarization characteristics and optical characteristics such as transmittance, and excellent external light anti-reflection characteristics and flexibility.
Abstract:
A touch panel, including a polyurethane substrate; a touch electrode including a first electrode layer on the polyurethane substrate, the first electrode including nanowires; and a polyurethane overcoat layer on the touch electrode, the polyurethane overcoat layer having an in-plane phase difference smaller than that of the polyurethane substrate.
Abstract:
The disclosure provides a cleaning agent composition for a flat panel display device, including: polyaminocarboxylic acid; alkali base; a nonionic surfactant; and a fluoride component. The cleaning agent composition for the flat panel display device can effectively remove metal oxides and organic contaminants on the substrate without impairing a transparent conductive layer.
Abstract:
An optical unit of embodiments of the present disclosure includes a phase difference layer including a UV absorbent, and a linear polarization layer on the phase difference layer. The phase difference layer may further includes a base film, a liquid crystal layer, and an overcoat layer on the liquid crystal layer. The resulting optical unit and the organic light emitting display including the same may have improved polarization characteristics and optical characteristics such as transmittance, and excellent external light anti-reflection characteristics and flexibility.
Abstract:
An organic light emitting diode display including: a display panel; a first retarder on the display panel and including a first reactive liquid crystal; a second retarder on the first retarder and including a second reactive liquid crystal; and a polarizer on the second retarder, wherein a first optical axis of the first reactive liquid crystal is inclined by 2θ+45° relative to an absorption axis of the polarizer, and a second optical axis of the second reactive liquid crystal is inclined by θ relative to the absorption axis of the polarizer.
Abstract:
This disclosure provides a touch panel including: a touch sensor; a phase difference film stacked on the touch sensor; and a touch panel configured to include a polarizer stacked on the phase difference film, wherein the touch panel includes an infrared-blocking substance. This results in a decrease in the curvature radius which in turn provides a touch panel with increased bending range and since the infrared radiation is also blocked due to the infrared-blocking agent, it prevents the breakage of displays due to infrared rays.
Abstract:
A manufacturing method of a thin film transistor of a display device, the method including forming a gate insulating layer on a semiconductor layer; attaching a halftone mask onto the gate insulating layer; forming a channel region including a plurality of bridged grain lines formed; exposing the gate insulating layer of the channel region; forming a gate electrode layer on the halftone mask and the gate insulating layer; forming a gate electrode on the channel region by etching a portion corresponding to a boundary of the channel region of the gate electrode layer; removing the halftone mask; forming source/drain regions; forming an interlayer insulating layer on the gate electrode and the gate insulating layer; forming contact holes by etching the gate insulating layer and the interlayer insulating layer to expose the source/drain regions; and forming source/drain electrodes connected with the source/drain regions through the contact holes.