Abstract:
A liquid crystal display device, including a display panel including data lines and gate lines intersecting the data lines, a gate driver configured to sequentially apply a scan signal to the gate lines, a data driver configured to apply data voltages corresponding to each gate lines to the data lines, a timing controller configured to control the gate driver and the data driver, a power source supply circuit configured to supply a positive power source and a negative power source, a common voltage feedback circuit configured to receive the positive power source and the negative power source from the power source supply circuit, receive a reference voltage and a common voltage from the display panel, and output an amplified feedback signal corresponding to a voltage level difference between the reference voltage and the common voltage.
Abstract:
A display device includes a display panel, a variable gate clock generator and a gate driver. The display panel includes a plurality of pixels coupled to a plurality of data lines and a plurality of gate lines, respectively. The variable gate clock generator generates a first variable gate clock signal and a second variable gate clock signal having respective duty ratios that are varied depending on a brightness of a frame image. The gate driver generates a plurality of gate driving signals for driving the gate lines in response to the first and second variable gate clock signals.
Abstract:
A display panel driving apparatus includes a control circuit, a data driver and a gate driver. The control circuit is configured to receive a first control signal for recovering a clock signal from a display signal including image data and the clock signal, and calculate a root mean square of the first control signal to output a second control signal. The data driver is configured to receive the display signal, receive the second control signal, recover the clock signal from the display signal according to the second control signal, and output a data signal based on the image data to a data line of a display panel. The gate driving part is configured to output a gate signal to a gate line of the display panel.
Abstract:
A display apparatus is provided which includes a display panel; a gate driver configured to drive a plurality of gate lines, a data driver configured to drive a plurality of data lines, a level shifter configured to generate a gate on voltage corresponding to an atmospheric temperature and to generate a gate clock signal, the gate on voltage becoming higher depending on a decrease in an atmospheric temperature, and a timing controller configured to control the gate driver and the data driver and to generate agate pulse signal having a pulse width corresponding to a voltage level of the gate on voltage.
Abstract:
A display device includes a display panel, a first circuit board, a control unit disposed on the first circuit board, a second circuit board, and a coupling film which electrically couples the control unit and the second circuit board to each other. The coupling film includes a first coupling part including a first region attached to the first circuit board, and a second region overlapping the display panel when viewed in a thickness direction of the display panel, a second coupling part including a third region attached to the second circuit board, and a fourth region overlapping the display panel when viewed in the thickness direction of the display panel, and a third coupling part coupled to each of the second region and the fourth region to electrically couple the first coupling part and the second coupling part to each other.
Abstract:
A display apparatus includes: a display panel which displays an image; a data driver which supplies a data voltage to the display panel in response to a polarity control signal, where the polarity control signal controls a polarity of the data voltage; a timing controller which outputs a polarity signal corresponding to a polarity of the data voltage; and a polarity converter which receives a common voltage from a common electrode of the display panel and the polarity signal from the timing controller, where the polarity converter outputs the polarity control signal to the data driver in response to a difference in voltage level between the common voltage from the common electrode and the polarity signal from the timing controller.
Abstract:
A method of reducing a time for switching a gate line driving signal of display device having plural gate lines from a level that is less than a full gate-on level to the gate-on level is disclosed. The method may include: during a gate line pre-charging period of a respective gate line, causing the gate line driving signal to be at the full gate-on level; during a corresponding gate line main-charging period that follows the pre-charging period, causing the gate line driving signal of to be at the full gate-on level; and during an interposed period that is interposed between the gate line pre-charging period and its corresponding gate line main-charging period, causing the gate line driving signal to be at an intermediate level that is between the full gate-on level and an opposed gate-off level.
Abstract:
A display device includes a display panel, a main digitizer and a sub-digitizer disposed behind the display panel. A main flexible circuit board is disposed on a rear surface of the main digitizer and is connected to the main digitizer. A sub-flexible circuit board disposed on a rear surface of the sub-digitizer and connected to the sub-digitizer. A bridge flexible circuit board disposed on the rear surface of the main digitizer and the rear surface of the sub-digitizer and connected to the main flexible circuit board and the sub-flexible circuit board.
Abstract:
A display device includes a first substrate, a second substrate facing the first substrate, and a sealing layer respectively including first, second and third side surfaces coplanar with each other; a first recess defined recessed from each of the first side surface, the second side surface and the third side surface; a first conductive pattern in the first recess; and a first driver facing each of the first side surface, the second side surface and the third side surface. At the first recess: the first conductive pattern is exposed to outside the first substrate, the second substrate and the sealing layer, and the first driver is electrically connected to the first conductive pattern.
Abstract:
A liquid crystal display device, including a display panel including data lines and gate lines intersecting the data lines, a gate driver configured to sequentially apply a scan signal to the gate lines, a data driver configured to apply data voltages corresponding to each gate lines to the data lines, a timing controller configured to control the gate driver and the data driver, a power source supply circuit configured to supply a positive power source and a negative power source, a common voltage feedback circuit configured to receive the positive power source and the negative power source from the power source supply circuit, receive a reference voltage and a common voltage from the display panel, and output an amplified feedback signal corresponding to a voltage level difference between the reference voltage and the common voltage.