Abstract:
A display panel includes a 1-1st sub-pixel and a 1-2nd sub-pixel disposed in a first row, a 2-1st sub-pixel disposed in a second row and a 3-1st sub-pixel and a 3-2nd sub-pixel disposed in a third row. A first data line extends from the first row to the third row and electrically connects a pixel circuit of the 1-1st sub-pixel, a pixel circuit of the 2-1st sub-pixel, and a pixel circuit of the 3-1st sub-pixel. A 2-1st data line is electrically connected to a pixel circuit of the 1-2nd sub-pixel. A 2-2nd data line is electrically connected to a pixel circuit of the 3-2nd sub-pixel. A first bridge line is disposed on a different layer than the data lines and contacts the 2-1st data line and the 2-2nd data line and includes an overlapping portion extending along at least a portion of the first data line.
Abstract:
A display panel includes a 1-1st sub-pixel and a 1-2nd sub-pixel disposed in a first row, a 2-1st sub-pixel disposed in a second row and a 3-1st sub-pixel and a 3-2nd sub-pixel disposed in a third row. A first data line extends from the first row to the third row and electrically connects a pixel circuit of the 1-1st sub-pixel, a pixel circuit of the 2-1st sub-pixel, and a pixel circuit of the 3-1st sub-pixel. A 2-1st data line is electrically connected to a pixel circuit of the 1-2nd sub-pixel. A 2-2nd data line is electrically connected to a pixel circuit of the 3-2nd sub-pixel. A first bridge line is disposed on a different layer than the data lines and contacts the 2-1st data line and the 2-2nd data line and includes an overlapping portion extending along at least a portion of the first data line.
Abstract:
A backlight device includes a substrate and a plurality of light emitters on the substrate. Each of the plurality of light emitters includes a brightness controller disposed on the substrate, and a pad unit disposed on the substrate. The brightness controller generates a light-emission current, a light-emitting diode is allowed to be disposed on the pad unit, and the light-emitting diode emits light based on the light-emission current.
Abstract:
Provided is a display device. The display device includes a display panel, a gate driving circuit, a sensor part, and a control voltage generator. The gate driving circuit includes driving transistors including a first control electrode and a second control electrode. The sensor part is configured to measure an environmental factor that changes a threshold voltage of the driving transistors. The control voltage generator is configured to apply to the second control electrode a control voltage for controlling the threshold voltage of the driving transistors on the basis of the environmental factor measured by the sensor part.
Abstract:
An organic light emitting device includes an organic light emitting diode including an anode and a cathode, a driving transistor including a first semiconductor layer, wherein the driving transistor is electrically connected to the anode of the organic light emitting diode, and a control transistor including a second semiconductor layer including a different material from the first semiconductor layer and configured to control the driving transistor. The first semiconductor layer includes a first channel part, and first and second contact parts, and the second semiconductor layer includes a second channel part, and third and fourth contact parts. One of the first and second contact parts directly contacts one of the third and fourth contact parts.
Abstract:
A display device is disclosed. In one aspect, the display device includes a timing controller configured to receive an image signal and a control signal and output a mode signal and a gate pulse signal based on the image signal and the control signal, wherein the mode signal has a voltage level and wherein the gate pulse signal has a frequency. The display device further includes a clock generator configured to generate a gate clock signal based on the mode signal and the gate pulse signal, wherein the gate clock signal has a voltage level and wherein the clock generator is further configured to set the voltage level of the gate clock signal based at least in part on the mode signal. The display device includes gate lines and a gate driver configured to drive gate lines based at least in part on the gate clock signal.
Abstract:
A display apparatus is disclosed, which includes a pixel. The pixel includes first through fifth transistors and a light emitting element. The first transistor includes a control electrode electrically connected to a first node, an input electrode that receives a first power voltage and an output electrode electrically connected to the light emitting element. The second transistor includes a control electrode that receives a scan signal, an input electrode that receives a grayscale data voltage and an output electrode electrically connected to a second node. The third transistor includes a control electrode electrically connected to the second node, an input electrode that receives a reference voltage and an output electrode electrically connected to the first node. The fourth transistor includes a control electrode that receives the scan signal, an input electrode that receives a bias data voltage and an output electrode electrically connected to the first node. The fifth transistor includes a control electrode that receives a sensing control signal, an input electrode that receives an initialization voltage and an output electrode electrically connected to the light emitting element.
Abstract:
A backlight device includes a substrate and a plurality of light emitters on the substrate. Each of the plurality of light emitters includes a brightness controller disposed on the substrate, and a pad unit disposed on the substrate. The brightness controller generates a light-emission current, a light-emitting diode is allowed to be disposed on the pad unit, and the light-emitting diode emits light based on the light-emission current.
Abstract:
Provided is a gate driving circuit including driving stages which provide a plurality of pixels of a display panel with gate signals, wherein any one of the driving stages includes a thin film transistor including a first control electrode, an activation part overlapping the first control electrode, an input electrode overlapping the activation part, an output electrode overlapping the activation part, and a second electrode disposed on the first control electrode and the activation part; and a capacitor including a first electrode disposed on the layer on which the first control electrode is disposed, a second electrode, which overlaps at least a portion of the first electrode and is disposed on the layer on which the input electrode is disposed, and a third electrode which overlaps the first and second electrodes and is electrically connected to the first electrode.
Abstract:
A gate driving circuit includes first and second driving stages respectively driving first and second gate lines of a display panel. The first driving stage includes output transistors, a first control transistor controlling an electric potential of a control node in response to a signal provided from the second driving stage through an input terminal before a first gate signal is output, and a second control transistor applying a first carry signal to the input electrode of the first control transistor while the first gate signal is output.