Abstract:
A rotation jig device may include both side housings that are disposed at both sides, a reverse gear that is disposed inside both side housings, a groove portion, front and rear side connection gears that are engaged with the reverse gear in both side housings, front and rear side pinion gears that are disposed at the front/rear side connection gear to be rotated, a rack gear that penetrates both side housings to be engaged with the front and rear side pinion gears, an advanced/retreat cylinder that is connected to each rack gear of both side housings to move each rack gear backward or forward, and a clamping portion that is disposed at the reverse gear and rotates with the reverse gear to clamp the workpiece.
Abstract:
A roof side rail is connected to a roof panel and includes a multi-sectional rail having a plurality of integrally formed ribs and bent along a shape of an upper portion of a side surface of a vehicle body, and a reinforcement rail that is combined with an inner side surface of the rail, an upper side flange is connected to the roof panel, and a lower side flange is engaged with a weather strip.
Abstract:
A mounting unit for a sub-frame of a vehicle is provided. The mounting unit is used for engaging a front side member with the vehicle's sub-frame. The mounting unit includes a welding seat that is formed as a groove on a lower side of the front side member. The mounting unit further includes a mounting nut assembled with the front side member, a welding flange integrated with an external circumference and a head of the mounting nut and inserted into the welding seat to be combined with the welding seat, and a member seat that is formed outside the welding flange and with which a fender upper connecting member is combined.
Abstract:
A clamping device and a laser welding apparatus using the same are disclosed. The clamping device may include: an upper clamping link mounted rotatably upwardly or downwardly by a hinge shaft; a lower clamping link mounted rotatably in an opposite direction of the upper clamping link by the hinge shaft and corresponding to the upper clamping link; at least two upper rollers rotatably mounted at the upper clamping link; at least two lower rollers rotatably mounted at the lower clamping link, corresponding to the upper roller, and fixing a welding object together with the upper rollers; and an operating cylinder configured to rotate the upper clamping link and the lower clamping link in opposite directions to each other.
Abstract:
A method of manufacturing a nut integrated with a bracket forms the nut formed integrally with the bracket or a slab base nut by using a plate material supplied between a punch and a die. The slab base nut includes a base plate and a boss extending from the base plate and including female-threads. The base plate and the boss are integrated into a single piece without welding trace.
Abstract:
A roll forming device for forming a variable thickness plate is disclosed. A roll forming device for forming a variable thickness plate according to one or a plurality of exemplary embodiments may include both-side stand frames that are disposed at a left side and a right side on a process base at a predetermined distance from each other and in which a sliding groove is formed at a center portion in an up and down direction, a lower forming roll unit in which a lower forming roll is fixed on a lower rotation shaft such that both end portions are rotatably disposed on a lower sliding block that is fixed to a lower portion of each sliding groove on the both-side stand frames, an upper forming roll unit in which an upper forming roll is fixed on an upper rotation shaft such that both end portions are rotatably disposed at an upper sliding block that is disposed on each sliding groove of the both-side stand frames to be slidably moved in an up and down direction at an upper portion of the lower forming roll unit, a forming roll gap adjustment unit that adjusts an initial gap between the lower forming roll and the upper forming roll, wherein a worm wheel and a worm gear are operated in an adjustment block of each upper portion of the both-side stand frames and an adjustment screw that is screw-engaged to a center of the worm wheel in an up and down direction adjusts an up-down direction position of the both-side upper sliding blocks, and a spring unit that is disposed between the adjustment screw and the upper sliding block within each sliding groove of the both-side stand frames, absorbs a forming reaction force that is applied to the upper forming roll according to a thickness variation of a plate that is to be formed, and simultaneously maintains a forming pressure of the upper forming roll within a predetermined range.
Abstract:
An impact detecting sensor assembly for an active hood system is disclosed. An impact detecting sensor assembly for an active hood system that is disposed at a front bumper of a vehicle, detects an impact force when a vehicle collides with a pedestrian, and controls the active hood system depending on the detection signal according to an exemplary embodiment of the present invention may include i) a flexible holder of a tube shape that is fixed on a front surface of a bumper beam of the front bumper in a vehicle width direction, and ii) a pair of electrode plates that are disposed in the flexible holder at a predetermined interval to face each other.
Abstract:
Disclosed is an apparatus for replacing a welding tip for spot welding. In an exemplary embodiment of the present invention, the apparatus for replacing a welding tip for spot welding includes a post installed in a workplace having a spot welding machine with upper, and lower welding guns provided thereto, a base plate mounted on a top of the post, a welding tip removing unit mounted on one side of an upper side of the base plate for clamping and removing a spent welding tip mounted to the upper welding gun or the lower welding gun by operation of a cylinder, a holder unit mounted on the upper side of the base plate spaced from the welding tip removing unit, and a welding tip cassette mounted to the holder unit in a state new welding tips to be mounted to the upper, and lower welding guns are set in an upper side and a lower side thereof.
Abstract:
A center pillar reinforcement unit for a vehicle is provided. A center pillar reinforcement unit for a vehicle according to an exemplary embodiment of the present invention may include: a plurality of reinforcement beams disposed on an exterior circumference of a center pillar inner panel in a height direction; an upper bracket disposed on an upper end portion of the center pillar inner panel and a roof rail, and fixing an end portion of the plurality of reinforcement beams; a center bracket disposed on a center portion of the center pillar inner panel, and fixing a center of the plurality of reinforcement beams; a lower bracket disposed on a lower portion of the center pillar inner panel, and fixing a lower portion of the plurality of reinforcement beams; and a gusset bracket formed inside of a side seal so that the lower portion of the plurality of reinforcement beams is assembled.
Abstract:
Disclosed is a flexible roll forming device including: bases respectively disposed on opposite sides with respect to a process direction center line in a left/right direction, each having an opening formed in an upper side thereof connected to an inside thereof, and rails configured thereon on opposite sides of the opening in a lateral direction of the process; forward/backward moving means having a slide plate provided to be movable along the rails on the base; turning means rotatably provided to the slide plate; and roll forming means provided on the turning means to include upper and lower forming rolls for subjecting a material fed thereto to flexible roll forming by using the upper and lower forming rolls while varying positions in the lateral direction of processing with the forward/backward moving means, and angles from a process direction with the turning means.