摘要:
Disclose herein are processes for producing a nickel cobalt aluminum composite hydroxide and producing a positive electrode active material for non-aqueous electrolyte secondary batteries. Nucleation is performed by controlling an aqueous solution for nucleation containing a nickel-containing metal compound, cobalt-containing metal compound, ammonium ion supplier, and aluminum source so that the aqueous solution's pH for nucleation is 12.0 to 13.4, and then in a particle growth step, particle growth is performed in an aqueous solution for particle growth obtained by controlling the aqueous solution for nucleation obtained in the nucleation step so that the pH of aqueous solution for nucleation is 10.5 to 12.0. Further, in nucleation step, an aqueous solution containing aluminum and sodium is used as the aluminum source contained in aqueous solution for nucleation, and the mole ratio of sodium to aluminum in aqueous solution containing aluminum and sodium is adjusted to 1.5 to 3.0.
摘要:
Provided is a positive-electrode material for nonaqueous-electrolyte secondary batteries, the positive-electrode material being capable of achieving both high capacity and high output when used for a positive electrode for nonaqueous-electrolyte secondary batteries. Also, provided is a method for manufacturing the positive-electrode material for nonaqueous-electrolyte secondary batteries, wherein a lithium metal composite oxide powder is mixed with lithium tungstate, the lithium metal composite oxide powder being represented by a general formula LizNi1-x-yCoxMyO2 (wherein 0.10≤x≤0.35, 0≤y≤0.35, 0.97≤z≤1.20, and M is an addition element and at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) and comprising primary particles and secondary particles composed of aggregation of the primary particles.
摘要:
A positive electrode active material for a non-aqueous electrolyte secondary battery, including primary particles of a lithium nickel composite oxide represented by the formula: LibNi1-x-yCoxMyO2 wherein M represents at least one element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Nb, Zr and Mo; b represents a number satisfying 0.95≦b≦1.03; and x represents a number satisfying 0
摘要:
Active material particles are provided that exhibit performance suitable for increasing the output of a lithium secondary battery and little deterioration due to charge-discharge cycling. The active material particles provided by the present invention have a hollow structure having secondary particles including an aggregate of a plurality of primary particles of a lithium transition metal oxide, and a hollow portion formed inside the secondary particles, and through holes that penetrates to the hollow portion from the outside are formed in the secondary particles. BET specific surface area of the active material particles is 0.5 to 1.9 m2/g.
摘要:
The purpose of the present invention is to easily provide at low cost, a cathode active material for non-aqueous electrolyte secondary batteries, which exhibits high particle strength and high weather resistance, while enabling achievement of excellent charge and discharge capacity and excellent output characteristics in cases where the cathode active material is used as a cathode material of a non-aqueous electrolyte secondary battery. A slurry of from 500 g/L to 2000 g/L is formed by adding water to a powder of a lithium nickel composite oxide represented by the general formula (A): LizNi1-x-yCoxMyO2, where 0.10≤x≤0.20, 0≤y≤0.10, 0.97≤z≤1.20, and M represents at least one element selected from among Mn, V, Mg, Mo, Nb, Ti and Al); the slurry is washed with water by stirring; and after filtration, the resulting material is subjected to a heat treatment at a temperature of from 120° C. to 550° C. (inclusive) in an oxygen atmosphere having an oxygen concentration of 80% by volume or more.
摘要:
Provided is a cathode active material for a non-aqueous electrolyte secondary battery that has a uniform particle size and high packing density, and that is capable of increased battery capacity and improved coulomb efficiency.When producing a nickel composite hydroxide that is a precursor to the cathode active material by supplying an aqueous solution that includes at least a nickel salt, a neutralizing agent and a complexing agent into a reaction vessel while stirring and performing a crystallization reaction, a nickel composite hydroxide slurry is obtained while controlling the ratio of the average particle size per volume of secondary particles of nickel composite hydroxide that is generated inside the reaction vessel with respect to the average particle size per volume of secondary particles of nickel composite hydroxide that is finally obtained so as to be 0.2 to 0.6, after which, while keeping the amount of slurry constant and continuously removing only the liquid component, the crystallization reaction is continued until the average particle size per volume of secondary particles of the nickel composite hydroxide becomes 8.0 μm to 50.0 μm.
摘要:
When producing a nickel composite hydroxide that is a precursor to the cathode active material for a non-aqueous electrolyte secondary battery by supplying an aqueous solution that includes at least a nickel salt, a neutralizing agent and a complexing agent into a reaction vessel while stirring and performing a crystallization reaction, a nickel composite hydroxide slurry is obtained while controlling the ratio of the average particle size per volume of secondary particles of nickel composite hydroxide that is generated inside the reaction vessel with respect to the average particle size per volume of secondary particles of nickel composite hydroxide that is finally obtained so as to be 0.2 to 0.6, after which, while keeping the amount of slurry constant and continuously removing only the liquid component, the crystallization reaction is continued until the average particle size per volume of secondary particles of the nickel composite hydroxide becomes 8.0 μm to 50.0 μm.
摘要:
Provided is a method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary batteries, the method comprising: a first step, wherein an alkaline solution with a tungsten compound dissolved therein is added to and mixed with a lithium metal composite oxide powder represented by a general formula LizNi1—x—yCoxMyO2 (wherein, 0.10≦x≦0.35, 0≦y≦0.35, 0.97≦Z≦1.20, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al), including primary particles and secondary particles composed of aggregation of the primary particles, and thereby W is dispersed on a surface of the primary particles; and a second step, wherein, by heat treating the mixture of the alkaline solution with the tungsten compound dissolved therein and the lithium metal composite oxide powder, fine particles containing W and Li are formed on a surface of the primary particles.
摘要:
The nickel-containing composite hydroxide disclosed herein contain secondary particles, which are formed from an aggregation of numerous primary particles, which have an average particle size of the primary particles is 0.01 μm to 0.40 μm. These secondary particles have a spherical or ellipsoidal shape, an average particle size of 20 μm to 50 μm, and a BET value of 12 m2/g to 50 m2/g after being roasted in air for 2 hours at 800° C.