Abstract:
The polarization imaging unit generates a polarized image including pixels for each of a plurality of polarization components. The demosaicing unit calculates a pixel signal for each polarization component by using the pixel signal of the target pixel of the polarized image and the pixel signal of the pixel for each of the identical polarization components located near the target pixel. In one example, a low frequency component is calculated for each polarization component using the pixel signal of the pixel located near the target pixel for each of the identical polarization components. In addition, component information indicating relationship between the low frequency component of the polarization component of the polarized image and the pixel signal of the target pixel is acquired. Furthermore, the pixel signal for each polarization component in the target pixel is calculated based on the low frequency component and the component information for each polarization component.
Abstract:
A correction information generation section 50 emits measurement light having uniform intensity onto a polarized image acquisition section 20 acquiring a polarized image. Further, on the basis of a measured polarized image acquired from the polarized image acquisition section 20, the correction information generation section 50 generates variation correction information for correcting sensitivity variations caused in the measured polarized image due to difference in polarization direction, and causes a correction information storage section 30 to store the generated variation correction information. A correction processing section 40 then corrects the sensitivity variations caused in the polarized image acquired by the polarized image acquisition section 20 due to the difference in polarization direction by using the pre-generated variation correction information stored in the correction information storage section 30. Therefore, the polarized image outputted from the correction processing section 40 becomes a high-quality polarized image with, for example, its sensitivity variations corrected.
Abstract:
A polarization imaging unit 20 acquires a polarized image including polarization pixels with a plurality of polarization directions. An information compression unit 40 sets reference image information based on polarized image information of reference polarization pixels with at least a plurality of polarization directions in the polarized image and generates difference information between the polarized image information of each of polarization pixels different from the reference polarization pixels in the polarized image and the reference image information. In addition, the information compression unit 40 reduces the amount of information of the difference information generated for each of the polarization pixels with the plurality of polarization directions to generate compressed image information including the reference image information and the difference information with the reduced amount of information. An information decoding unit 70 applies a decoding process corresponding to the compression process of the information compression unit 40 to the compressed image information acquired through a recording medium 50 or a transmission path 60 to generate the polarized image and outputs the polarized image to a polarized image using unit 80.
Abstract:
An information generation unit 30 acquires, from a polarization imaging unit 20, observation values in which polarization directions are at least three or more directions (m≥3). A noise amount calculation unit 35-1 calculates an amount of noise on the basis of an observation value in a first polarization direction. Similarly, noise amount calculation units 35-2 to 35-m calculate amounts of noise on the basis of observation values in second to m-th polarization directions. A polarization model estimation unit 36 estimates a polarization model by using the observation values for the respective polarization directions and the amounts of noise calculated by the noise amount calculation units 35-1 to 35-m. Thus, it is possible to calculate a polarization model that is robust against noise.
Abstract:
A correction information generation section 50 emits measurement light having uniform intensity onto a polarized image acquisition section 20 acquiring a polarized image. Further, on the basis of a measured polarized image acquired from the polarized image acquisition section 20, the correction information generation section 50 generates variation correction information for correcting sensitivity variations caused in the measured polarized image due to difference in polarization direction, and causes a correction information storage section 30 to store the generated variation correction information. A correction processing section 40 then corrects the sensitivity variations caused in the polarized image acquired by the polarized image acquisition section 20 due to the difference in polarization direction by using the pre-generated variation correction information stored in the correction information storage section 30. Therefore, the polarized image outputted from the correction processing section 40 becomes a high-quality polarized image with, for example, its sensitivity variations corrected.
Abstract:
[Object] To simplify a procedure of an action between users in a virtual space. [Solution] Provided is an information processing device including: a display control unit configured to display an image of a virtual space in which a first user acts; an action information generation unit configured to generate action information indicating an action from the first user to a second user in the virtual space; and a light modulation control unit configured to control modulation of light for displaying the image of the virtual space according to the action information. There is provided an information processing device including: a captured image acquisition unit configured to acquire a captured image including a screen of a device displaying a first image; an action information extraction unit configured to extract action information from modulation of light in a part of the screen of the captured image; a response processing unit configured to perform a process in which the second user responds to the action; and a display control unit configured to display a second image of the virtual space in which the second user acts according to a result of the process.
Abstract:
An image pickup unit 20 has a configuration in which non-polarizing pixels and polarizing pixels are disposed, the polarizing pixels being provided per angle in at least two polarization directions. A demosaicing unit 50 generates a non-polarized image, and a polarization component image per polarization direction, from a captured image generated by the image pickup unit 20. A polarization information generating unit 60 generates polarization information indicating the polarization characteristics of a subject included in the captured image, from the non-polarized image and the polarization component image generated by the demosaicing unit 50. As described above, the polarization information is generated with not only the polarization component image but also the highly-sensitive non-polarized image not having a decrease in the amount of light. Therefore, accurate polarization information can be acquired compared to a case where polarization information is generated on the basis of the polarization component image.
Abstract:
An image processing apparatus includes a superimposition processing unit that performs a blending process for a plurality of continuously captured images, wherein the superimposition processing unit is configured to selectively input luminance signal information of a RAW image or a full color image as a processing target image and perform a superimposition process, and performs a process for sequentially updating data that is stored in a memory for storing two image frames so as to enable superimposition of any desired number of images.