Abstract:
Disclosed is a method for producing a quality lubricant base oil (meeting the standard of Group III or higher) comprising: decarbonylating mixed fatty acids derived from oils and fats of biological origin to produce mixed olefins; oligomerizing the mixed olefins to produce an olefinic lubricant base oil; and performing hydrogenation to remove olefins from the olefinic lubricant base oil.
Abstract:
A method for preparing an estolide compound and an estolide compound prepared thereby are disclosed. The method for preparing an estolide compound includes: converting biomass fat into a fatty acid; separating the fatty acid into a C16 saturated fatty acid and a C18 unsaturated fatty acid; preparing a linear internal olefin (LIO); increasing an amount of oleic acid through partial hydrogenation of the C18 unsaturated fatty acid; synthesizing an estolide polymer through cross metathesis of the oleic acid; capping the C16 saturated fatty acid onto the estolide polymer; and reacting the estolide polymer with the linear internal olefin.
Abstract:
Disclosed is a method of producing an estolide having high structural stability, including: a) preparing a fatty acid mixture from biomass-derived oil; b) separating the fatty acid mixture into a C16 fatty acid and a C18 fatty acid; c) converting the C18 fatty acid into a C18 or C17 linear internal olefin; and d) subjecting the C18 or C17 linear internal olefin and the C16 fatty acid to an estolide reaction, thus obtaining an estolide.
Abstract:
The present invention relates to a lubricant base oil containing an aromatic ester lubricant represented by Chemical Formula 1 and to a method for preparing the aromatic ester lubricant. By containing an aromatic ester lubricant, the lubricant base oil exhibits an excellent dispersibility and fluidity and is ecofriendly due to a high biodegradability. In addition, the method for preparing the aromatic ester lubricant does not generate such toxic substances as S, N, aromatic compounds and heavy metals and enables an easy control of the physical properties of a desired lubricant base oil by selecting a suitable alcohol compound to be introduced for an esterification reaction.
Abstract:
The present invention relates to a preparation method of a lube base oil including a conversion of biomass fat to a fatty acid; a separation of a C18 unsaturated fatty acid from the fatty acid; a maximization of an oleic acid content through partial hydrotreating of the C18 unsaturated fatty acid; a synthesis of a dimer or higher-order oligomer through an oligomerization of the oleic acid; and an esterification of the oligomer, and relates to a lube base oil prepared therefrom. The lube base oil of the present invention contains an x-type diester dimer and has an excellent low-temperature stability and a high biodegradability resulting from its chemical structure, thus being ecofriendly.
Abstract:
The present invention relates to a lubricant base oil containing an aromatic ester lubricant represented by Chemical Formula 1 and to a method for preparing the aromatic ester lubricant. By containing an aromatic ester lubricant, the lubricant base oil exhibits an excellent dispersibility and fluidity and is ecofriendly due to a high biodegradability. In addition, the method for preparing the aromatic ester lubricant does not generate such toxic substances as S, N, aromatic compounds and heavy metals and enables an easy control of the physical properties of a desired lubricant base oil by selecting a suitable alcohol compound to be introduced for an esterification reaction.
Abstract:
The present invention relates to a lubricant base oil containing an aromatic ester lubricant represented by Chemical Formula 1 and to a method for preparing the aromatic ester lubricant. By containing an aromatic ester lubricant, the lubricant base oil exhibits an excellent dispersibility and fluidity and is ecofriendly due to a high biodegradability. In addition, the method for preparing the aromatic ester lubricant does not generate such toxic substances as S, N, aromatic compounds and heavy metals and enables an easy control of the physical properties of a desired lubricant base oil by selecting a suitable alcohol compound to be introduced for an esterification reaction.
Abstract:
Disclosed is a method for producing a quality lubricant base oil (meeting the standard of Group III or higher) comprising: decarbonylating mixed fatty acids derived from oils and fats of biological origin to produce mixed olefins; oligomerizing the mixed olefins to produce an olefinic lubricant base oil; and performing hydrogenation to remove olefins from the olefinic lubricant base oil.
Abstract:
Disclosed is a method of preparing a drilling fluid and lube base oil using biomass-derived fatty acid, including hydrogenating a fatty acid mixture derived from fat of biological origin so as to be converted into a fatty alcohol mixture, which is then dehydrated to give a C16 and C18 linear internal olefin mixture, which is then oligomerized to give olefinic lube base oil, followed by hydrofinishing to remove the olefin, yielding high-quality lube base oil (e.g. Group III or higher lube base oil). The C16 and C18 linear internal olefin mixture, which is a reaction intermediate, can be utilized as a high-quality drilling fluid.
Abstract:
Disclosed is a method for producing a drilling fluid, comprising: a) preparing mixed fatty acids from a biomass-derived oil, b) subjecting the mixed fatty acids of step a) to an estolide reaction with a light acid to give an estolide, and c) esterifying the estolide of step b) with an alcohol to obtain the drilling fluid.