Abstract:
An electricity meter comprises a conductor having a substantially planar surface; and a carrier for carrying a sensor component for enabling detection of current flowing in the conductor, wherein the carrier is spaced from the planar surface of the conductor by an arrangement of at least three spacing elements. The spacing elements may project from the carrier or from the substantially planar surface of the conductor.
Abstract:
An electrode assembly for an electromagnetic flow meter (1; FIG. 1) is disclosed. The electrode assembly comprises a housing, which may be a flow tube (2; FIG. 1) of the electromagnetic flow meter, having a passage (123) between first and second ends (1241, 1242), an electrode (125) comprising a plug of porous material, for example formed of porous graphite, at least partially disposed within the passage proximate the first end, and an electrically-conductive polymer connector (125) at least partially disposed within the passage and in direct contact with the electrode.
Abstract:
An electricity meter includes a converter configured to synchronously modulate current and voltage measurement signals and output synchronously-modulated current and voltage measurement signals and also includes a measurement module configured to receive the synchronously-modulated current and voltage measurement signals from the converter and to process the synchronously-modulated current and voltage measurement signals
Abstract:
A control unit (2) for a fuel injector (3) comprising a solenoid actuator (31) having an armature (33), the control unit configured to drive a current through an electromagnet coil (34) of the solenoid actuator in a voltage mode during at least a portion of an injection cycle.
Abstract:
Apparatus (2) is described including one or more signal sources (6). The apparatus (2) also includes a measurement front end (7) having at least first (+Vin)) and second (−Vin) inputs. The apparatus (2) also includes a substantially planar connector (1) having a length (L) between first (1a) and second (1b) ends and supporting a number of conductors (3) spanning between the first (1a) and second (1b) ends. At each point between the first (1a) and second (1b) ends the conductors (3) are substantially equi-spaced from one another within the substantially planar connector (1). The conductors (3) include at least one signal conductor (8) connecting the signal sources (6) to the first input (+Vin). The conductors (3) also include at least two further conductors (10, 11) connecting to the one or more signal sources (6). One or both of the two further conductors (10, 11) also connect to the second input (−Vin). Each of the at least one signal conductor (8) and the at least two further conductors (10, 11) belongs to one or more closed loops. The one or more closed loops have areas and impedances configured such that in response to a uniform time-varying external magnetic field being applied to the apparatus, a first unwanted electromotive force induced at the first input (+Vin) will be substantially equal to a second unwanted electromotive force induced at the second input (−Vin).
Abstract:
An electricity meter comprises a conductor having a substantially planar surface; and a carrier for carrying a sensor component for enabling detection of current flowing in the conductor, wherein the carrier is spaced from the planar surface of the conductor by an arrangement of at least three spacing elements. The spacing elements may project from the carrier or from the substantially planar surface of the conductor.
Abstract:
A solenoid-based fuel injector is described. The fuel injector comprises a tubular body (48) comprising a magnetic material and an armature (16) disposed inside the tubular body. The tubular body has an integrally-formed, inwardly-projecting shelf (52) configured to provide a pole piece.
Abstract:
A short travel solenoid actuator (44) is disclosed which comprises at least one pole piece (47, 48), an armature (51), an electromagnet coil (46) arranged, in response to energisation, to actuate the armature between first and second positions. A permanent magnet (52) is positioned and orientated so as to latch the armature in the first and second positions when the armature is in the first and second positions respectively. A spring (53) is arranged to bias the armature.
Abstract:
Mutual inductance-type current sensing apparatus (1) is described which includes a mutual inductance current sensor (11) having a first transfer function. The apparatus (1) also includes a low-pass filter (12) which receives a signal from the current sensor (11). The low-pass filter (12) has a second transfer function configured to attenuate one or more harmonic components of the signal. The apparatus (1) also includes an analogue-to-digital converter (13) which receives and digitises a filtered signal output from the low-pass filter. The apparatus (1) also includes a controller (8) configured to process a digitised signal from the analogue-to-digital converter (13) using a digital processing chain configured to compensate for the frequency and phase responses of the first transfer function and the second transfer function.
Abstract:
A control unit (2) for a fuel injector (3) comprising a solenoid actuator (31) having an armature (33), the control unit configured to drive a current through an electromagnet coil (34) of the solenoid actuator in a voltage mode during at least a portion of an injection cycle.