摘要:
A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
摘要:
An electric automobile incorporating a secondary battery has a disadvantage such as a difficulty in knowing the remaining capacity accurately and in predicting the time when the remaining capacity becomes zero because of deterioration of the secondary battery. The internal resistance is estimated with high accuracy even when the secondary battery deteriorates. Data used for learning or estimation is a data group (also referred to as data with regenerative charging) that is limited to data acquired within a certain time range around the end of regenerative charging. Such data within the limited range is extracted, used for learning, and subjected to the estimation. Thus, a value of the internal resistance can be output with high accuracy, specifically, with a mean error rate of 1% or less.
摘要:
Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
摘要:
A positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charging and discharging as compared with those of a known positive electrode active material. In order to form the positive electrode active material having the pseudo-spinel crystal structure in the charged state, it is preferable that a halogen source such as a fluorine and a magnesium source be mixed with particles of a composite oxide containing lithium, a transition metal, and oxygen, which is synthesized in advance, and then the mixture be heated at an appropriate temperature for an appropriate time.
摘要:
A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed. In addition, since the outer coating layer in contact with an electrolyte solution is the compound of representative elements which is chemically stable, the secondary battery having excellent cycle characteristics can be obtained.
摘要:
The amount of lithium ions that can be received and released in and from a positive electrode active material is increased, and high capacity and high energy density of a secondary battery are achieved. Provided is a lithium-manganese composite oxide represented by LixMnyMzOw, where M is a metal element other than Li and Mn, or Si or P, and y, z, and w satisfy 0≦x/(y+z) 0, z>0, 0.26≦(y+z)/w
摘要翻译:能够在正极活性物质中吸收和释放的锂离子的量增加,二次电池的高容量和高能量密度得以实现。 提供了由LixMnyMzOw表示的锂锰复合氧化物,其中M是除Li和Mn以外的金属元素,或Si或P,y,z和w满足0&lt; nlE; x /(y + z)<2,y > 0,z> 0,0.26和nlE;(y + z)/ w <0.5和0.2
摘要:
The safety is ensured in such a manner that with an abnormality detection system of a secondary battery, abnormality of a secondary battery is detected, for example, a phenomenon that lowers the safety of the secondary battery is detected early, and a user is warned or the use of the secondary battery is stopped. The abnormality detection system of the secondary battery determines whether the temperature of the secondary battery is within a temperature range in which normal operation can be performed on the basis of temperature data obtained with a temperature sensor. In the case where the temperature of the secondary battery is high, a cooling device is driven by a control signal from the abnormality detection system of the secondary battery. The abnormality detection system of the secondary battery includes at least a memory means. The memory means has a function of holding an analog signal and includes a transistor using an oxide semiconductor for a semiconductor layer.
摘要:
A semiconductor device that detects deterioration of a secondary battery is provided. The semiconductor device includes a power gauge, an anomalous current detection circuit, and a control circuit. The power gauge includes a current divider circuit and an integrator circuit. The anomalous current detection circuit includes a first memory, a second memory, and a first comparator. The integrator circuit can convert a detection current detected at the current divider circuit into a detection voltage by integrating the detection current. The anomalous current detection circuit is supplied with the detection voltage, a first signal at a first time, and a second signal at a second time. The first signal can make the detection voltage at the first time be stored in the first memory and the second signal can make the detection voltage at the second time be stored in the second memory. The first comparator outputs a change from the detection voltage at the first time to the detection voltage at the second time as a first output signal to the control circuit.
摘要:
A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
摘要:
To increase the amount of lithium ions that can be received in and released from a positive electrode active material to achieve high capacity and high energy density of a secondary battery. A lithium manganese oxide particle includes a first region and a second region. The valence number of manganese in the first region is lower than the valence number of manganese in the second region. The lithium manganese oxide has high structural stability and high capacity characteristics.