Abstract:
A user system is provided which includes a storage device and an auxiliary power device configured to supply a power to the storage device, wherein the auxiliary power device includes a first one direction device configured to supply a supply voltage from an external power supply to the storage device, a charging unit configured to be charged by the external power supply, a second one direction device configured to selectively supply an output voltage of the charging unit to the storage device, a voltage detector configured to detect a level of the output voltage of the charging unit and to output a first control signal to the storage device, and a switching unit connected between the charging unit and the second one direction device and configured to operate in response to a second control signal from the storage device.
Abstract:
A power supply for supplying power to a chipset includes a first voltage regulating circuit, which is configured to convert an applied power supply signal into a group of first supply voltages, and a second voltage regulating circuit, which is configured to convert the applied power supply signal into a group of second supply voltages. A control circuit is provided, which is configured to selectively enable the second voltage regulating circuit to generate the group of second supply voltages. An output discharge circuit is provided, which is configured to discharge an output stage of the first voltage regulating circuit in response to a transition of the first voltage regulating circuit from an active state to an inactive state. This transition of the first voltage regulating circuit from an active state to an inactive state can occur in response to a change in magnitude of the power supply signal.
Abstract:
A power supply for supplying power to a chipset includes a first voltage regulating circuit, which is configured to convert an applied power supply signal into a group of first supply voltages, and a second voltage regulating circuit, which is configured to convert the applied power supply signal into a group of second supply voltages. A control circuit is provided, which is configured to selectively enable the second voltage regulating circuit to generate the group of second supply voltages. An output discharge circuit is provided, which is configured to discharge an output stage of the first voltage regulating circuit in response to a transition of the first voltage regulating circuit from an active state to an inactive state. This transition of the first voltage regulating circuit from an active state to an inactive state can occur in response to a change in magnitude of the power supply signal.
Abstract:
A power supply circuit includes a sequence control circuit configured to generate at least one control signal in response to a main power source, a voltage regulator circuit configured to be coupled to the main power source and to selectively generate at least one power supply voltage for a chipset from the main power source in response to the at least one control signal and a discharge circuit configured to discharge the voltage regulator circuit responsive to the at least one control signal.
Abstract:
A tactile sensor includes a first substrate including a plurality of first electrodes, a second substrate including a plurality of second electrodes corresponding to the plurality of first electrodes, and a dielectric substance disposed between the first substrate and the second substrate, wherein a second electrode corresponding to any one of the first electrodes is offset in one direction with respect to the any one of the first electrodes while a second electrode corresponding to another first electrode neighboring the any one of the first electrodes is offset in another direction.