Abstract:
A method and corresponding apparatus for processing a shuffle instruction are provided. Shuffle units are configured in a hierarchical structure, and each of the shuffle units generates a shuffled data element array by performing shuffling on an input data element array. In the hierarchical structure, which includes an upper shuffle unit and a lower shuffle unit, the shuffled data element array output from the lower shuffle unit is input to the upper shuffle unit as a portion of the input data element array for the upper shuffle unit.
Abstract:
An apparatus and a method for performing a single instruction multiple data (SIMD) operation using pairing of registers are provided. An example SIMD apparatus includes a first register configured to store first result data generated by dyadic operators, and a second register configured to store second result data generated by the dyadic operators. The first register and the second register may be paired with each other. Examples also include the use of more than two dyadic operators and/or registers, as well as intermediate registers.
Abstract:
A method of performing a soft demapping, includes obtaining a signal from a symbol representing bits that is transmitted from a transmitter, and calculating a gradient of a reference line in a constellation for a bit based on a rotation angle and a channel state of the constellation. The method further includes selecting a candidate for each of lines that corresponds to a logic value of the bit from constellation points included in the constellation based on the signal and the gradient of the reference line, and calculating a log-likelihood ratio (LLR) of the bit based on the signal and the selected candidate for each of the lines.
Abstract:
A soft demapping apparatus and method thereof includes a pre-processing unit to pre-process a reception signal obtained from a symbol representing bits. A candidate selection unit selects two candidates from among constellation points included in a constellation for each of the bits. A distance calculation unit calculates a Euclidean distance between the reception signal and the two candidates. A log-likelihood ratio (LLR) calculation unit calculates an LLR with respect to the bits based on the Euclidean distance between the reception signal and the two candidates.