Abstract:
A modular arithmetic unit includes a first input generator receiving first data to generate a first operand; a second input generator receiving second data to generate a second operand; an accumulator performing an accumulate/shift operation to add the first and second operands and outputting the carry and sum; a carry propagation adder adding the carry and the sum to output a result; and a data handler receiving either external data or the result and outputting the first data and the second data.
Abstract:
A device includes a random number generator configured to generate a random number, a memory configured to store at least one lookup table, and a processing circuit configured to generate a generator based on the random number, create the at least one lookup table based on the generator, and write the created at least one lookup table to the memory, wherein the processing circuit is configured to access the memory based on a first input and a second input, and generate a result of a modular multiplication of the first input by the second input based on the at least one lookup table.
Abstract:
A modular multiplier and a modular multiplication method are provided. The modular multiplier includes: a first register which stores a previous accumulation value calculated at a previous cycle; a second register which stores a previous quotient calculated at the previous cycle; a quotient generator which generates a quotient using the stored previous accumulation value output from the first register; and an accumulator which receives an operand, a bit value of a multiplier, the stored previous accumulation value, and the stored previous quotient to calculate an accumulation value in a current cycle, wherein the calculated accumulation value is updated to the first register, and the generated quotient is updated to the second register.
Abstract:
A multiplication method and a modular multiplier are provided. The multiplication method includes transforming a redundant-form multiplier by adding a recoding constant to the multiplier, performing recoding by using the transformed multiplier, and performing partial multiplication between the multiplier and a multiplicand using result values of the recoding.
Abstract:
A security circuit includes a decoder configured to receive input data and output a decoding signal in response to the input data, a first encoder configured to output one of first phenotypes corresponding to any one among integers in N-decimal (N is a natural number of 1 or more) as a first encoding value in response to the decoding signal, a second encoder configured to output one of second phenotypes corresponding to any one among integers in N-decimal as a second encoding value in response to the decoding signal, and a gate module circuit configured to generate output data by performing a logic operation on the first encoding value and the second encoding value.
Abstract:
An authentication apparatus, included in a device supporting a network communication, includes a certificate handler that receives a certificate of an opponent and parses or verifies the certificate of the opponent. Cryptographic primitives receive an authentication request of the opponent, generate a random number in response to the authentication request, generate a challenge corresponding to the random number, and verify a response of the opponent corresponding to the challenge. A shared memory stores the parsed certificate, the random number, the challenge, and the response. An authentication controller controls the certificate handler, the cryptographic primitives, and the shared memory through a register setting, according to an authentication protocol.
Abstract:
A modular multiplier and a modular multiplication method are provided. The modular multiplier includes: a first register which stores a previous accumulation value calculated at a previous cycle; a second register which stores a previous quotient calculated at the previous cycle; a quotient generator which generates a quotient using the stored previous accumulation value output from the first register; and an accumulator which receives an operand, a bit value of a multiplier, the stored previous accumulation value, and the stored previous quotient to calculate an accumulation value in a current cycle, wherein the calculated accumulation value is updated to the first register, and the generated quotient is updated to the second register.
Abstract:
A Montgomery multiplier includes a partial product computing unit for multiplying a multiplicand and a multiplier; a modulus reduction computing unit for performing a multiplication of a modulus and a quotient that reflects a quotient sign; an accumulation unit for accumulating in a intermediate value an output value of the partial product computing unit and an output value of the modulus reduction computing unit from a previous cycle; a quotient computing unit for receiving an accumulation value of the accumulation unit during a current cycle and calculating a quotient sign to be used during a next cycle; and a quotient sign determination unit for determining a quotient sign to be used during a next cycle from the multiplicand, the multiplier and the quotient.
Abstract:
A security circuit includes a decoder configured to receive input data and output a decoding signal in response to the input data, a first encoder configured to output one of first phenotypes corresponding to any one among integers in N-decimal (N is a natural number of 1 or more) as a first encoding value in response to the decoding signal, a second encoder configured to output one of second phenotypes corresponding to any one among integers in N-decimal as a second encoding value in response to the decoding signal, and a gate module circuit configured to generate output data by performing a logic operation on the first encoding value and the second encoding value.
Abstract:
An electronic device and a method for identifying a location by the electronic device are provided. The electronic device includes a display, a processor electrically connected with the display and a memory, and the memory storing instructions executed by the processor. The processor is configured to obtain a plurality of locations in a space-of-interest, detect a wireless signal from at least one external electronic device located in the space-of-interest or an adjacent area, obtain detection frequency data according to a frequency of detection of the wireless signal, and identify a current location of the electronic device based on at least part of the obtained detection frequency data.