摘要:
A permutation algorithm using modular arithmetic is applied to the cells of one or more specific fields of a database or other file type. This permutation reorders the cells of the specific field(s) without altering content of any individual cell, thereby hiding relationships between cells of the permuted field(s) and the other information in the associated records. The permutation algorithm may use modular addition and modular subtraction, in either order. Different permutation algorithms may use varying numbers of parameters. To locate a specific cell in a permuted field, the parameter(s) from the permutation, an identification of the specific record associated with the cell, and an identification of the specific permuted field are applied in a modular arithmetic operation. A specific record with which a specific cell in a permuted field is associated may be obtained by an inverse modular arithmetic operation.
摘要:
A method of protecting a modular calculation on a first number and a second number, executed by an electronic circuit, including the steps of: combining the second number with a third number to obtain a fourth number; executing the modular calculation on the first and fourth numbers, the result being contained in a first register or memory location; initializing a second register or memory location to the value of the first register or to one; and successively, for each bit at state 1 of the third number: if the corresponding bit of the fourth number is at state 1, multiplying the content of the second register or memory location by the inverse of the first number and placing the result in the first register or memory location, if the corresponding bit of the fourth number is at state 0, multiplying the content of the second register or memory location by the first number and placing the result in the first register or memory location.
摘要:
An electronic calculating device (100) for performing arithmetic in a commutative ring (Zn; Zn [x]/f(x)) is presented. The calculating device comprising a storage (110) arranged to store an increment table (T) defined for an increment ring element (1; ut), the increment table mapping an input ring element (k=uk1−uk2) to an output integer-list (T((k1 k2))=(I1, I2)) encoding an output ring element (I=uI1−uI2), such that the output ring element equals the increment ring element ring-added to the input ring element (I=k−1). Using the increment table, a ring addition unit (130) adds a first addition-input integer-list ((a1, a2)) encoding a first addition-input ring element and a second addition-input integer list ((b1, b2)) encoding a second addition-input ring element. The device may comprise a ring multiplication unit (140) also using the increment table.
摘要:
This disclosure relates to methods for generating a prime number, which can be implemented in an electronic device. An example method can include calculating a candidate prime number using a formula Pr=2P·R+1, where P is a prime number and R is an integer. The method can also include applying the Pocklington primality test to the candidate prime number and rejecting the candidate prime number if it fails the Pocklington test. The integer can be generated from an invertible number belonging to a set of invertible elements modulo the product of numbers belonging to a group of small prime numbers greater than 2, where the candidate prime number is not divisible by any number of the group. The prime number P having a number of bits equal to within one bit, to half or a third of the number of bits of the candidate prime number.
摘要:
A method for generating a large prime number in an embedded system, comprising: (1) setting all identifiers in an identifier group in a first storage area; generating and storing a random number with preset bit length in a third storage area; modulizing the data in the third storage area by using the data stored in the storage unit of a second storage area as a modulus; determining the serial number of the identifier to be reset in the identifier group according to the modulized value and the data in the storage unit corresponding to the modulized value; and resetting the identifier corresponding to the serial number; (2) judging whether a set identifier exists in the identifier group, if yes, then executing step (3); otherwise, returning to step (1); and (3), determining a number to be detected according to the random number and the serial number of the set identifier in the identifier group; detecting the primality of the number to be detected; if the number to be detected passes the primality detection, then outputting the number to be detected; and if the numbers to be detected corresponding to all the set identifiers in the identifier group fail to pass the primality detection, then returning to step (1). The present method has high efficiency and is suitable for an embedded system.
摘要:
A classifier learning apparatus (100) includes: an object acquisition unit (101) that acquires a set of reference vectors and assigned category information of the respective reference vectors as a processing object; a specifying unit (102) that specifies an internal nearest neighbor reference vector nearest to a sample vector among the reference vectors assigned to the same category as the sample vector and specifies an external nearest neighbor reference vector nearest to the sample vector among the reference vectors assigned to a category different from that of the sample vector; a calculation unit (103) that calculates an evaluation value of the processing object using a distance between the sample vector and a classification boundary formed by the internal nearest neighbor reference vector and the external nearest neighbor reference vector; and an updating unit (104) that updates an original set of reference vectors and original assigned category information with the processing object based on the evaluation value.
摘要:
In the present disclosure, implementations of Diffie-Hellman key agreement are provided that, when embodied in software, resist extraction of cryptographically sensitive parameters during software execution by white-box attackers. Four embodiments are taught that make extraction of sensitive parameters difficult during the generation of the public key and the computation of the shared secret. The embodiments utilize transformed random numbers in the derivation of the public key and shared secret. The traditional attack model for Diffie-Hellman implementations considers only black-box attacks, where attackers analyze only the inputs and outputs of the implementation. In contrast, white-box attacks describe a much more powerful type of attacker who has total visibility into the software implementation as it is being executed.
摘要:
An integrated circuit die stack comprises a first die coupled with a second die. The first die has a first memory volume. The second die has a second memory volume different from the first memory volume. Each of the first and second dies comprises a functional circuitry and a programmable array coupled with the functional circuitry. The programmable arrays in the first and second dies are programmed to bypass one of the first die or the second die having the smaller of the first memory volume or the second memory volume at a first time period.
摘要:
Distributed processing system and method for discrete logarithm calculation. The speed and resource efficiency of discrete logarithm calculation may be improved by allowing a plurality of operation agents to distributively process an operation of generating a modulo multiplication auxiliary table, an operation of generating a pre-calculation table, and an operation of searching for an answer by applying an iterated function for discrete logarithm calculation in a discrete logarithm calculation operation using the pre-calculation table.
摘要:
A device may determine historical state values to be used to calculate a current state value of a wrapped state associated with a model element. The wrapped state may be associated with a range of state values. The device may calculate the current state value of the wrapped state based on the historical state values, and may determine that the current state value is outside of the range of state values. The device may generate a modified current state value based on determining that the current state value is outside of the range of state values. The modified current state value may be within the range of state values. The device may modify a historical state value based on determining that the current state value is outside of the range of state values. The device may provide or store the modified current state value and the modified historical state value.