Abstract:
Systems and methods related to a structured illumination (SI)-based inspection apparatus are described. The SI-based inspection apparatus may be capable of accurately inspecting an inspection object in real time with high resolution, while reducing the loss of light. Also described are an inspection method, and a semiconductor device fabrication method including the SI-based inspection method. The inspection apparatus may include a light source configured to generate and output a light beam, a phase shifting grating (PSG) configured to convert the light beam from the light source into the SI, a beam splitter configured to cause the SI to be incident on an inspection object and output a reflected beam from the inspection object, a stage capable of moving the inspection object and on which the inspection object is arranged, and a time-delayed integration (TDI) camera configured to capture images of the inspection object by detecting the reflected beam.
Abstract:
A method of manufacturing a light emitting diode is provided. The method includes forming a semiconductor layer on a substrate, forming a mask layer including a plurality of grooves on the semiconductor layer, forming a plurality of nanostructures in the plurality of grooves, respectively, forming an etched region by etching an outer region of the semiconductor layer and an inner region of the semiconductor layer different from the outer region, forming a first electrode on the etched region of the semiconductor layer, forming an insulation layer on the first electrode, and forming a second electrode on the insulation layer and the plurality of nanostructures.
Abstract:
Systems and methods related to a structured illumination (SI)-based inspection apparatus are described. The SI-based inspection apparatus may be capable of accurately inspecting an inspection object in real time with high resolution, while reducing the loss of light. Also described are an inspection method, and a semiconductor device fabrication method including the SI-based inspection method. The inspection apparatus may include a light source configured to generate and output a light beam, a phase shifting grating (PSG) configured to convert the light beam from the light source into the SI, a beam splitter configured to cause the SI to be incident on an inspection object and output a reflected beam from the inspection object, a stage capable of moving the inspection object and on which the inspection object is arranged, and a time-delayed integration (TDI) camera configured to capture images of the inspection object by detecting the reflected beam.
Abstract:
A method of manufacturing a light emitting diode is provided. The method includes forming a semiconductor layer on a substrate, forming a mask layer including a plurality of grooves on the semiconductor layer, forming a plurality of nanostructures in the plurality of grooves, respectively, forming an etched region by etching an outer region of the semiconductor layer and an inner region of the semiconductor layer different from the outer region, forming a first electrode on the etched region of the semiconductor layer, forming an insulation layer on the first electrode, and forming a second electrode on the insulation layer and the plurality of nanostructures.
Abstract:
A method for storing X-ray data includes acquiring the X-ray data by using an X-ray detection module; and transmitting all or some of the acquired X-ray data to other X-ray detection module which is different from the X-ray detection module that has acquired the X-ray data.
Abstract:
A method for manufacturing a light emitting diode (LED) apparatus is provided. The method includes forming a plurality of color filters on a glass layer, forming a plurality of light leakage preventing films on the glass layer in a space between the plurality of color filters; forming a plurality of conductive materials on a surface of each of the plurality of light leakage preventing films opposite to the glass layer; and bonding a plurality of light emitting diodes with the plurality of conductive materials to correspond to the plurality of color filters, respectively.
Abstract:
An X-ray detector and an X-ray imaging apparatus including the X-ray detector are provided. The X-ray detector includes a detector element including a cathode electrode and an anode electrode which are spaced apart from each other and a photoconductive layer located between the cathode electrode and the anode electrode and configured to absorb X-rays and generate electric charges, a first temperature controller configured to contact a first surface of the detector element and is configured to control a temperature of the cathode electrode, and a second temperature controller configured to contact a second surface of the detector element opposite to the first surface of the detector element and configured to control a temperature of the anode electrode.