Abstract:
A chemical liquid supply apparatus includes a nozzle unit including a nozzle arm and an injection nozzle mounted in an end of the nozzle arm, a chemical liquid supply unit including a first chemical liquid tank accommodating a first chemical liquid and a second chemical liquid tank accommodating a second chemical liquid, and supplying the first chemical liquid and the second chemical liquid to the nozzle unit, and a mixer unit provided in the nozzle unit and discharging a process fluid by mixing the first chemical liquid and the second chemical liquid, wherein the mixer unit includes an in-line mixer mixing the first chemical liquid and the second chemical liquid that are continually injected from the chemical liquid supply unit, and a mixer pipe extending from the in-line mixer to the injection nozzle.
Abstract:
A nozzle may include a nozzle body, a conductive line and a resistance-measuring member. The nozzle body may include a plurality of injecting holes. The conductive line may be disposed along the injecting holes. The resistance-measuring member may be configured to measure a resistance of the conductive line to detect a deformation of the injecting holes.
Abstract:
A source supplier includes a source reservoir that contains a liquefied source fluid for a supercritical process, a vaporizer that vaporizes the liquefied source fluid into a gaseous source fluid under high pressure, a purifier that removes organic impurities and moistures from the gaseous source fluid and an analyzer connected to the purifier that analyzes an impurity fraction and a moisture fraction in the gaseous source fluid. Moisture and organic impurities are removed from the source fluid to reduce the moisture concentration of the supercritical fluid in the supercritical process.