Abstract:
A display device according to an exemplary embodiment of the present invention includes: a substrate; a plurality of transistors formed on the substrate; and a light-emitting device connected to the plurality of transistors, wherein the transistor includes a gate electrode, the plurality of transistors include a first transistor and a second transistor of which lateral wall slope angles of the gate electrode are different from each other, and the first transistor further includes a doping control member formed on a lateral wall of the gate electrode.
Abstract:
An organic light emitting diode display includes a first thin film transistor of which a channel is formed in a polycrystalline transistor, a second thin film transistor of which a channel is formed in an oxide semiconductor layer, an organic light emitting diode electrically connected to the first thin film transistor, a storage capacitor having a first electrode and a second electrode, wherein the second electrode of the storage capacitor is electrically connected to a gate electrode of the first thin film transistor, and an overlapping layer overlapping the oxide semiconductor layer in a plan view and receiving a positive voltage. The oxide semiconductor layer is positioned higher than the gate electrode of the first thin film transistor and the second electrode of the storage capacitor.
Abstract:
An exemplary embodiment of the present invention provides a display device including: a substrate including a display area including a plurality of pixels, a peripheral area around the display area, and a bending area that is disposed in the peripheral area and is bent or is able to be bent: a plurality of transistors disposed in the pixel; a driving voltage line that is disposed in the display, area and transmits a driving voltage; a driving voltage transmission line disposed in the peripheral area and connected to the driving voltage line; and an overlap layer that is conductive and overlaps at least one of the plurality of transistors in a plan view, wherein the overlap layer may be disposed in a layer between the substrate and the transistors, the overlap layer may include a first portion disposed in the display area and a second portion disposed in the peripheral area, the second portion may overlap the driving voltage transmission line in the plan view, the second portion may contact the driving voltage transmission line through a contact hole provided in a plurality of insulating layers disposed between the second portion and the driving voltage transmission line, and the contact hole may be disposed in the peripheral area between the display area and the bending area.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
An organic light emitting diode display includes a first thin film transistor of which a channel is formed in a polycrystalline transistor, a second thin film transistor of which a channel is formed in an oxide semiconductor layer, an organic light emitting diode electrically connected to the first thin film transistor, a storage capacitor having a first electrode and a second electrode, wherein the second electrode of the storage capacitor is electrically connected to a gate electrode of the first thin film transistor, and an overlapping layer overlapping the oxide semiconductor layer in a plan view and receiving a positive voltage. The oxide semiconductor layer is positioned higher than the gate electrode of the first thin film transistor and the second electrode of the storage capacitor.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A thin film transistor array panel according to an exemplary embodiment of the present disclosure includes: an insulating substrate; a gate electrode disposed on the insulating substrate; a gate insulating layer disposed on the gate electrode; a semiconductor disposed on the gate insulating layer; a source electrode and a drain electrode disposed on the semiconductor; an ohmic contact layer disposed at an interface between at least one of the source and drain electrodes and the semiconductor. Surface heights of the source and drain electrodes different, while surface heights of the semiconductor and the ohmic contact layer are the same. The ohmic contact layer is made of a silicide of a metal used for the source and drain electrodes.