Abstract:
Devices and methods of modifying tissue for low profile and ultra profile rongeur devices to treat spinal tissue. These devices may include a curved or curveable distal region; the cutting member may be configured to operate in the curved region. Also described herein are tissue modification devices that may be flexible or bendable for positioning in the tissue (including the spinal region) but can be made rigid once in position, or otherwise fixed in place to allow leverage when modifying the tissue.
Abstract:
Devices and methods for cutting tissue in a patient. In some embodiments, a bimanually controlled device may include a tissue modification region; one or more (e.g., two) flexible elongate length of cable that extend proximally to distally, a tissue modification region along a portion of the length of cable; and a guidewire coupler at the distal end of the device for attaching the distal end of the tissue modification device to the proximal end of a guidewire. Method of using these devices (including devices having two or more parallel length of cutting regions) to cut tissue (e.g., spinal lamina) are also described.
Abstract:
Method and devices for cutting and removing a portion of a tissue composition which includes cancellous bone which is directly or indirectly impinging on a neural structure of the spine by creating channels through the tissue structure and then removing the detached tissue.
Abstract:
Tissue modification devices, and particularly very low-profile, yet strong and manipulatable Rongeur devices. In general, these devices are low-profile, with a flat and thin distal end that may be much thinner than it is wide. The distal end includes a cutting window within which one or more blades move to cut tissue. The distal end region and the curved region forming an angle with an elongate rigid body may be sufficiently stiff and rigid so that the distal end can be pushed (or pulled) against a tissue to be cut with sufficient force so that even hard tissue such as bone may be held within the window and cut by the blade(s).
Abstract:
Described herein are methods and systems for precisely placing and/or manipulating devices within the body by first positioning a guidewire or pullwire. The device to be positioned within the body is coupled to the proximal end of the guidewire, and the device is pulled into the body by pulling on the distal end of the guidewire that extends from the body. The device may be bimanually manipulated by pulling the guidewire distally, and an attachment to a device that extends proximally, allowing control of both the proximal and the distal ends. In this manner devices (and particularly implants such as innerspinous distracters, stimulating leads, and disc slings) may be positioned and/or manipulated within the body. Guidewire exchange systems, devices and methods are also described. A guidewire may be exchanged between different surgical devices and may be releaseably or permanently coupled.
Abstract:
Vaso-occlusive apparatuses, including implants, and methods of using them to treat aneurysms. The vaso-occlusive implants described herein include one or more soft and expandable braided member coupled to a pushable member such as a coil that maybe inserted and retrieved from within an aneurism using a delivery catheter as well as a friction element between the soft braided member and the coil. The friction element allows the relatively soft and elongate implant to be pushed out of a cannula without binding up within the cannula.
Abstract:
Vaso-occlusive apparatuses, including implants, and methods of using them to treat aneurysms. The vaso-occlusive implants described herein include one or more soft and expandable braided member coupled to a pushable member such as a coil that maybe inserted and retrieved from within an aneurism using a delivery catheter as well as a friction element between the soft braided member and the coil. The friction element allows the relatively soft and elongate implant to be pushed out of a cannula without binding up within the cannula.
Abstract:
A method for removing a blood clot from a cranium of a patient may involve forming an opening in the patient's cranium, advancing an elongate blood clot removal device through the opening into the cranium, positioning a distal end of the clot removal device at or near the clot, rotating a rotating member of the clot removal device at or near the distal end of the clot removal device to at least partially break up the clot, and removing the at least partially broken up clot from the cranium through the clot removal device.
Abstract:
Described herein are elongate devices for modifying tissue having a plurality of flexibly connected rungs or links, and methods of using them, including methods of using them to decompress stenotic spinal tissue. These devices may be included as part of a system for modifying tissue. In general, these devices include a plurality of blades positioned on (or formed from) rungs that are flexibly connected. The rungs are typically rigid, somewhat flat and wider than they are long (e.g., rectangular). The rungs may be arranged, ladder like, and may be connected by a flexible connector substrate or between two or more cables. Different sized rungs may be used. The blades (on the rungs) may be arranged in a staggered arrangement. A tissue-collection or tissue capture element may be used to collect the cut or modified tissue.