Abstract:
An apparatus, in particular a microfluid apparatus, includes a chamber for extracting a fluid. The chamber has a wall with an opening. The opening is sealed by a sealing mechanism that is impermeable to specified substances. The apparatus further includes a membrane that contacts the outside of the wall, in a region of an outside of the wall which adjoins the opening, and covers the opening.
Abstract:
A film bag for storing a fluid, in particular a reagent or an auxiliary agent for a biochemical analysis method, includes a film, a seam, and an irreversibly destructible predetermined breaking point. The film is impermeable to the fluid and constituents of the fluid. The seam is formed in a fluid-tight manner between a first sub-region of the film and a second sub-region of the film and forms the film into a fluid-tight bag for accommodating the fluid. The bag is configured to be arranged in a chamber of a device that provides a fluid for a biochemical evaluating unit. The predetermined breaking point is formed from the film and is fluid-tight when a fluid pressure in the film bag is below a limit. The predetermined breaking point is destroyed when the fluid pressure is above the limit.
Abstract:
A unit for making available a fluid for a biochemical analysis device includes a lid element and a bottom element with a bottom recess lying opposite the lid element. A film is arranged between the lid element and the bottom element. A fluid bag with a force introduction surface for introducing a force into the fluid bag is folded and/or arranged in the bottom recess such that, without pressure acting on the film, the force introduction surface and a main plane of the film are oriented in different directions. The film is pressed against the force introduction surface when pressure acts on the film in the direction of the bottom recess to thereby introduce the force into the fluid bag. The fluid bag has at least one closure seam that opens when the force is introduced.
Abstract:
A film bag for storing a fluid, in particular a reagent or an auxiliary agent for a biochemical analysis method, includes a film, a seam, and an irreversibly destructible predetermined breaking point. The film is impermeable to the fluid and constituents of the fluid. The seam is formed in a fluid-tight manner between a first sub-region of the film and a second sub-region of the film and forms the film into a fluid-tight bag for accommodating the fluid. The bag is configured to be arranged in a chamber of a device that provides a fluid for a biochemical evaluating unit. The predetermined breaking point is formed from the film and is fluid-tight when a fluid pressure in the film bag is below a limit. The predetermined breaking point is destroyed when the fluid pressure is above the limit.
Abstract:
The disclosure relates to a microfluidic analysis device and to a method for operating the microfluidic analysis device. The method comprises the following steps: providing a sample containing DNA, performing a PCR pre-amplification of the sample, dividing the sample into at least two reaction compartments, and performing at least one singleplex detection in each of the at least two reaction compartments. The singleplex detection is performed in each case by means of an isothermal amplification system.
Abstract:
An apparatus, in particular a microfluid apparatus, includes a chamber for extracting a fluid. The chamber has a wall with an opening. The opening is sealed by a sealing mechanism that is impermeable to specified substances. The apparatus further includes a membrane that contacts the outside of the wall, in a region of an outside of the wall which adjoins the opening, and covers the opening.
Abstract:
A unit is configured to make available a fluid for a biochemical analysis device. The unit includes a lid element and a bottom element with a bottom recess lying opposite the lid element. The unit includes a film, arranged between the lid element and the bottom element, and a fluid bag with a force introduction surface configured to introduce a force into the fluid bag. The fluid bag is folded and/or arranged in the bottom recess such that, without pressure acting on the film, the force introduction surface and a main plane of the film are oriented in different directions. The film is configured to be pressed against the force introduction surface when pressure acts on the film in the direction of the bottom recess to introduce the force into the fluid bag. The fluid bag has at least one closure seam configured to open when the force is introduced.