Abstract:
A method for tracing a communication route through a network coupling a first device with a second device is provided. A first signal is transferred from the first device to the second device to cause a plurality of intermediate devices to report first information concerning the first signal. The first information is processed to identify the intermediate devices as defining the communication route. The intermediate devices are configured so that a second signal, when transferred from the first device toward the second device, causes a subset of the intermediate devices to report second information concerning the second signal. The second signal is transferred from the first device toward the second device. The second information is processed to identify the subset of the intermediate devices as a portion of a sequence of the intermediate devices defining the communication route.
Abstract:
A control system for a communication network stores a plurality of fault recovery plans that are respectively associated with a plurality of links. The control system processes a first control signal from the communication network indicating that one of the links has a fault, and in response, identifies one of the fault recovery plans that is associated with the one link having the fault and implements the one fault recovery plan. The control system receives a second control signal from the communication network indicating network information, and in response, recalculates the fault recovery plans. The recalculated fault recovery plans implement link-based fault recovery, sub-path based fault recovery, and path-based fault recovery. The recalculated fault recovery plans group links constituents into groups by QoS requirements and assign the groups to back-up routes based on the QoS requirements and the performance of the back-up routes.
Abstract:
A method of operating a communication system to communicate with a plurality of wireless devices comprises determining a first shape for a first wireless signal to reach the plurality of wireless devices, transmitting the first wireless signal encoded with a first communication to the plurality of wireless devices, receiving an acknowledgment from a first device of the plurality of wireless devices indicating that the first device received and decoded the first communication, determining a second shape for a second wireless signal to reach a second device of the plurality of wireless devices, and transmitting the second wireless signal encoded with error correction information for the first communication to the second device of the plurality of wireless devices.
Abstract:
Systems and methods for transmitting video are provided. The system determines the type of encoded video frames. Each of the video frames is then placed in a network transport packet. A priority level of the network transport packet is set based on the determined type of the video frame. The system can apply error correction coding to video frames of a lower priority level.
Abstract:
A method and a communication system are disclosed for automatically verifying the identity of a network connection in an optical communication network. Each network component of the optical communication network stores an identification code. For the method, one step includes positioning a read system proximate to one of the network components. With the read system in the proper position, another step of the method includes reading the identification code stored on the network component. Another step of the method includes verifying the identity of a network connection based on the identification code read from the network component by the read system. Another step of the method includes indicating the results of the verification using the read system. Based on the results of the verification, a field technician may verify the identity of a network connection before connecting or disconnecting a fiber optic cable or otherwise handling the network component.
Abstract:
A communication system receives information from a first communication link. The communication system transfers a free-space optical signal carrying the information and transfers a high-GHz wireless signal carrying the information. The communication system receives the free-space optical signal carrying the information and receives the high-GHz wireless signal carrying the information. The communication system assesses communication performance for the free-space optical signal and the high-GHz wireless signal, and based on the communication performance, selects between the free-space optical signal and the high-GHz wireless signal to provide the information. The communication system transfers the information to a second communication link based on the selection.
Abstract:
Ways for facilitating an automated calling process are described. An embodiment includes receiving a start indication to start recording events associated with a call process, starting a timing reference, receiving data provided by a user, storing information suitable to reproduce the received data based on the timing reference, and repeating the receiving step and the storing step until a stop indication to stop recording events is received. Redialing can occur without user intervention by retrieving a first indication of an information-providing event associated with a dialing process, providing data to satisfy the information-providing event, determining whether a subsequent information-providing event is to be expected, waiting for a correct time or for a prompt to provide additional data to satisfy the subsequent information-providing event, providing additional data to satisfy the subsequent information-providing event, and without user interaction, repeating the determining, waiting, and providing steps until the call is connected or until there is no additional data to provide.
Abstract:
Systems and methods for a mobile universal communication gateway are provided. The mobile universal communication gateway can bridge a mobile station located in a personal area network with one or more wide area networks. The mobile universal communication gateway can select one or more backhaul communication links to the one or more wide area networks based on a variety of factors such as available bandwidth, access cost, traffic loads and the like. The mobile universal communication gateway can also include a non-volatile storage area to store information for mobile stations of the personal area network.
Abstract:
An access selection system comprises an interface system configured to receive a plurality of traffic and transfer a first traffic of the plurality of traffic over a first access link of a plurality of access links wherein the plurality of traffic is generated by a plurality of applications. The access system further comprises a processing system coupled to the interface system and configured to process the first traffic of the plurality of traffic to determine a first application of the plurality of applications that generated the first traffic and select the first access link from the plurality of access links based on the first application.
Abstract:
A jitter buffer system having a jitter buffer configured to buffer traffic and a control system coupled to the jitter buffer and configured to determine a first characteristic of the traffic in the jitter buffer, adjust the size of the jitter buffer by a constant when the first characteristic does not satisfy a first constraint for the first characteristic, determine a rate of adjusting the jitter buffer, and change the constant when the rate does not fall within a specified range.