摘要:
An unfired, refractory molded body (1), especially a plate, especially for thermal insulation of molten metal and/or an ingot solidifying from molten metal, that includes a binding agent matrix (2) of a set binder and aggregate grains (3) of biogenic silicic acid, preferably of rice husk ash, which are incorporated into the binding agent matrix (2), wherein the binding agent matrix (2) consists of silica gel, as well as a process for its production and its usage.
摘要:
A heat insulating plate (1), preferably a covering plate (5a;b), especially for thermal isolation of molten metal, especially of molten steel, in a metallurgical vessel (6), wherein the plate (3) includes a binding agent matrix (2) of at least one, set, temporary, organic binding material and aggregate grains (3) with and/or of biogenic silicic acid, preferably with and/or of rice husk ash, which grains (3) are incorporated into the binding agent matrix (2), and to a method for production of the plate (1) and its use.
摘要:
A molded, fireproof product, which contains graphite, in particular natural graphite, and is based on fireproof granular materials. The granular-material grains of the product are consolidated to form a molded body by means of a binder known per se and/or ceramic bonding. The product has a homogeneous mixture of at least two graphite types, which each have a different coefficient of thermal expansion. One graphite type is predominant by amount and the other graphite type acts as an auxiliary graphite type. The invention further relates to a method for producing a product and to the use of the product.
摘要:
A flame-retardant batch, and the use thereof, primarily contains—at least 30% by weight of a coarse-grain olivine raw material with a forsterite content of, e.g. at least 70% by weight and having grain sizes of, e.g. 100% by weight over 0.1 mm, —at least 35% by weight in magnesia in meal form with grain sizes of, e.g. 100% by weight.
摘要:
An unfired, refractory molded body (1), includes a binding agent matrix (2) containing at least one set, permanent binding material and aggregate grains (3) with and/or of biogenic silicic acid, preferably with and/or of rice husk ash, which grains are incorporated into the binding agent matrix (2), for thermal isolation of a molten metal, especially of molten steel, and/or of a metal ingot solidifying from the molten metal, and also the use of the molded body (1) for thermal isolation of a refractory lining, in particular in a multiple-layer brick wall or in a heat-treatment furnace, or as a corrosion barrier, e.g. against alkali attack, or as a fire protection lining or as filter material for hot gases.
摘要:
A synthesis method for producing a refractory oxide-ceramic material of CaZrO3, in particular in the form of a refractory granular material that is preferably mechanically comminuted, in particular crushed and/or ground, as well as to a batch and a coarse ceramic, shaped or unshaped, refractory product containing at least one pre-synthesized refractory calcium zirconate-containing granular material.
摘要:
An unfired, refractory molded body (1), especially a plate, especially for thermal insulation of molten metal and/or an ingot solidifying from molten metal, that includes a binding agent matrix (2) of a set binder and aggregate grains (3) of biogenic silicic acid, preferably of rice husk ash, which are incorporated into the binding agent matrix (2), wherein the binding agent matrix (2) consists of silica gel, as well as a process for its production and its usage.
摘要:
A refractory has the form of a dry, mineral batch of fire-resistant mineral materials combined in such a way that refractories which are long-term resistant to fayalite-containing slags, sulfidic melts (mattes), sulfates and non-ferrous metal melts and are used for refractory linings in industrial non-ferrous metal melting furnaces can be manufactured. The refractory at least contains: —at least one coarse-grained olivine raw material as the main component; —magnesia (MgO) meal; —at least one fire-resistant reagent which, during the melting process, acts (in situ) in a reducing manner on non-ferrous metal oxide melts and/or non-ferrous metal iron oxide melts and converts same into non-ferrous metal melts.
摘要:
A batch made of refractory mineral materials for lining of assemblies used for nonferrous metal melts, contains over 90% by weight of a mixture of the following constituents:—from 3 to 74% by weight of at least one coarse-grain raw olivine material with at least 70% by weight forsterite content and having grain sizes of 50% by weight over 0.1 mm—from 25 to 49% by weight of at least one ground magnesia with grain sizes of 50% by weight≤1 mm—from 0.9 to 14% by weight of at least one ground silicon carbide (SiC) with grain sizes of 50% by weight≤1 mm—from 0.1 to 10% by weight of at least one fine-particle dry pulverulent silica with particle sizes≤500 μm—from 0 to 4% by weight of at least one antioxidant known per se for refractory products—from 0 to 4% by weight of at least one additional granulated refractory raw material known per se, more particularly having grain sizes of 50% by weight, in particular of 80% by weight, preferably of 100% by weight over 0.1 mm—from 0 to 2% by weight of at least one additive known per se for the production of refractory products from batches—from 0 to 4% by weight of at least one additional substance known per se made of ground refractory materials and/or in the form of what is known as medium-grain-size material and/or of what is known as coarse-grain-size material—from 0 to 10% by weight of at least one binder known per se for refractory materials, e.g. in dry form or in ancillary packaging in liquid form.
摘要:
There is a process for creating graphite free non-fired refractory products, which are molded using presses and which includes using a plurality of different binders. The binders comprise a first binder for binding grains of granulation between room temperature and 400° C., a second binder binding the grains of granulation between 300 and 900° C.; and a third binder binding granulations of the refractory materials that enter into ceramic binding at temperatures above 900° C. This process is for producing at least one of magnesia chromite bricks, magnesia spinel and spinel bricks, magnesia zirconia and magnesia zircon bricks, magnesia hercynite and magnesia galaxite bricks, dolomite, dolomite-magnesia, and lime bricks, forsterite and olivine bricks, magnesia forsterite bricks, magnesia pleonast bricks, magnesia bricks. These products are configured to operate as a fire-side, refractory lining of large-volume industrial furnaces operated with an essentially oxidizing atmosphere, for the production of cement, lime, magnesia, and doloma.