Abstract:
Polyester polyols made from recycled polyethylene terephthalate (rPET) and processes for making them are disclosed. The rPET is heated with a C3-C10 glycol reactant to give a digested intermediate comprising glycols and a terephthalate component, which comprises 45 to 70 wt. % of bis(hydroxyalkyl)terephthalates, and preferably lesser amounts of terephthalate dimers and trimers. Treatment of the digested intermediate with activated carbon gives a polyester polyol having a color index less than 20. The polyols have desirable hydroxyl numbers, viscosities, appearance, and other attributes for formulating polyurethane products and are a sustainable alternative to bio- or petrochemical-based polyols.
Abstract:
Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
Abstract:
Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
Abstract:
Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
Abstract:
Polyester polyols made from recycled polyethylene terephthalate (rPET) and processes for making them are disclosed. The rPET is heated with a C3-C10 glycol reactant to give a digested intermediate comprising glycols and a terephthalate component, which comprises 45 to 70 wt. % of bis(hydroxyalkyl)terephthalates, and preferably lesser amounts of terephthalate dimers and trimers. Treatment of the digested intermediate with activated carbon gives a polyester polyol having a color index less than 20. The polyols have desirable hydroxyl numbers, viscosities, appearance, and other attributes for formulating polyurethane products and are a sustainable alternative to bio- or petrochemical-based polyols.
Abstract:
Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.