Abstract:
The manufacturing method of the semiconductor device includes a step of forming the gate dielectric film GI2 and the polysilicon layer PS2 on the main surface SUBa of the semiconductor substrate SUB, a step of forming the isolation trench TR in the semiconductor substrate SUB through the polysilicon layer PS2 and the gate dielectric film GI2, a step of filling the isolation trench TR with the dielectric film, and then a step of polishing the dielectric film to form the element isolation film STI in the isolation trench TR. Further, a method for manufacturing a semiconductor device comprises etching the element isolation film STI to retract the upper surface STIa of the element isolation film STI, then further depositing a polysilicon layer on the polysilicon layer PS2 to form a gate electrode using an anisotropic dry etching method.
Abstract:
An improvement is achieved in the reliability of a semiconductor device. A structure is obtained in which a first insulating film for a gate insulating film of a memory element is formed over a semiconductor substrate located in a memory region, a second insulating film for a gate insulating film of a lower-breakdown-voltage MISFET is formed over the semiconductor substrate located in a lower-breakdown-voltage MISFET formation region, and a third insulating film for a gate insulating film of a higher-breakdown-voltage MISFET is formed over the semiconductor substrate located in a higher-breakdown-voltage MISFET formation region. Subsequently, a film for gate electrodes is formed and then patterned to form the respective gate electrodes of the memory element, the lower-breakdown-voltage MISFET, and the higher-breakdown-voltage MISFET. The step of forming the second insulating film is performed after the step of forming the first insulating film. The step of forming the third insulating film is performed before the step of forming the first insulating film.
Abstract:
Provided is a semiconductor device having improved performance. The semiconductor device includes the memory cells of a flash memory. Each of the memory cells includes a capacitor element for writing/erasing data having a gate electrode formed of a part of a floating gate electrode, and a MISFET for reading data having a gate electrode formed of another part of the floating gate electrode. The capacitor element for writing/erasing data has a p-type semiconductor region and an n-type semiconductor region which have opposite conductivity types. The length of the floating gate electrode in a gate length direction in the capacitor element for writing/erasing data is smaller than the length of the floating gate electrode in the gate length direction in the MISFET for reading data.
Abstract:
To make a gate insulating film of a selecting transistor coupled in series to a MONOS memory transistor thinner and to ensure insulation resistance of the gate insulating film, the selecting transistor and the memory transistor, which constitute a memory cell, are formed on an SOI substrate, and an extension region of the selecting transistor is formed to be away from a selecting gate electrode in a plan view. A drain region of the selecting transistor and a source region of the memory transistor share the same semiconductor region with each other.
Abstract:
In a semiconductor device including a nonvolatile memory, information of a memory transistor of an unselected bit is accidentally erased during information write operation. A well region is provided in a memory region of a bulk region defined in a SOI substrate. A memory transistor having an LDD region and a diffusion layer is provided in the well region. A raised epitaxial layer is provided on the surface of the well region. The LDD region is provided from a portion of the well region located directly below a sidewall surface of a gate electrode to a portion of the well region located directly below the raised epitaxial layer. The diffusion layer is provided in the raised epitaxial layer.
Abstract:
Provided is a semiconductor device having improved performance. The semiconductor device includes the memory cells of a flash memory. Each of the memory cells includes a capacitor element for writing/erasing data having a gate electrode formed of a part of a floating gate electrode, and a MISFET for reading data having a gate electrode formed of another part of the floating gate electrode. The capacitor element for writing/erasing data has a p-type semiconductor region and an n-type semiconductor region which have opposite conductivity types. The length of the floating gate electrode in a gate length direction in the capacitor element for writing/erasing data is smaller than the length of the floating gate electrode in the gate length direction in the MISFET for reading data.
Abstract:
A semiconductor device including a nonvolatile memory cell with a high performance and also a high reliability is provided. A nonvolatile memory cell includes a first n-well, a second n-well separated from the first n-well in a first direction, a selection transistor formed in the first n-well, a floating gate electrode formed to overlap with a part of the first n-well and a part of the second n-well in a plan view, and an n-conductivity-type semiconductor regions formed in the second n-well on both sides of the floating gate electrode. In write operation, −7 V is applied to the drain of a selected nonvolatile memory cell, −8 V is applied to the gate electrode of the selection transistor, and further −3 V is applied to the n-conductivity-type semiconductor region for obtaining a higher write speed. Thereby, a selected nonvolatile memory cell is discriminated from an unselected nonvolatile memory cell.
Abstract:
In a semiconductor device including a nonvolatile memory, information of a memory transistor of an unselected bit is accidentally erased during information write operation. A well region is provided in a memory region of a bulk region defined in a SOI substrate. A memory transistor having an LDD region and a diffusion layer is provided in the well region. A raised epitaxial layer is provided on the surface of the well region. The LDD region is provided from a portion of the well region located directly below a sidewall surface of a gate electrode to a portion of the well region located directly below the raised epitaxial layer. The diffusion layer is provided in the raised epitaxial layer.
Abstract:
In a MONOS memory having an ONO film, dielectric breakdown and a short circuit are prevented from occurring between the end of the lower surface of a control gate electrode over the ONO film and a semiconductor substrate under the ONO film. When a polysilicon film formed over the ONO film ON is processed to form the control gate electrode, the ONO film is not processed. Subsequently, a second offset spacer covering the side surface of the control gate electrode is formed. Then, using the second offset spacer as a mask, the ONO film is processed. This results in a shape in which in the gate length direction of the control gate electrode, the ends of the ONO film protrude outwardly from the side surfaces of the control gate electrode, respectively.
Abstract:
A semiconductor device is obtained in which a first insulating film for a gate insulating film of a memory element is formed over a semiconductor substrate in a memory region, a second insulating film for a gate insulating film of a lower-breakdown-voltage MISFET is formed over the semiconductor substrate in a lower-breakdown-voltage MISFET formation region, and a third insulating film for a gate insulating film of a higher-breakdown-voltage MISFET is formed over the semiconductor substrate in a higher-breakdown-voltage MISFET formation region. Subsequently, a film for gate electrodes is formed and then patterned to form the respective gate electrodes of the memory element, the lower-breakdown-voltage MISFET, and the higher-breakdown-voltage MISFET. The step of forming the second insulating film is performed after the step of forming the first insulating film. The step of forming the third insulating film is performed before the step of forming the first insulating film.