Abstract:
In various aspects, the disclosure provides a hub that is adapted for radio-agnostic message translation. The hub may be configured to establish a connection with a target device using a first network access technology, receive a first message from a first client device through a connection established on a second network access technology, translate the first message from a first transmission format to obtain a second message in a second transmission format, and transmit the second message to the target device and using the first network access technology. The first network technology may employ a first wireless technology having a range that is less than 100 meters. The first client device may be separated from the target device by a distance that is greater than the range of the first wireless technology
Abstract:
Various aspects directed towards automating an onboarding procedure are disclosed. In a first aspect, an administrative communication associated with onboarding an onboardable device is received by an access point (AP) device, such that the administrative communication originates from a device different than the onboardable device. The AP device then enables the onboardable device to access a secure network based on the administrative communication. In another aspect, an identifier is transmitted from an onboardable device while the onboardable device operates in an AP mode. The onboardable device then receives credentials associated with accessing a secure network via an AP device. Here, the credentials received from the AP device are in response to an authentication of the identifier by an administrator. The onboardable device then connects to the secure network by utilizing the credentials.
Abstract:
Methods and apparatus for automatically coupling stackable modular devices are described. The modular devices may be coupled using electromagnetic forces generated by precisely-timed pulses of electric current through electromagnetic materials that cause a first modular device to screw itself into a second modular device. The modular devices may exchange data through electrical or optical connections after coupling. A method includes detecting that a second modular device is proximately and coaxially located to a first modular device, activating a plurality of electromagnetic elements in an annular electromagnetic array according to a timed sequence, each electromagnetic element being activated at a different time than the other electromagnetic elements in the plurality of electromagnetic elements, detecting that the second modular device is communicatively coupled with the first modular device, and deactivating the plurality of electromagnetic elements after detecting that the second modular device is communicatively coupled with the first modular device.
Abstract:
In various aspects, the disclosure provides a hub that is adapted for radio-agnostic message translation. The hub may be configured to establish a connection with a target device using a first network access technology, receive a first message from a first client device through a connection established on a second network access technology, translate the first message from a first transmission format to obtain a second message in a second transmission format, and transmit the second message to the target device and using the first network access technology. The first network technology may employ a first wireless technology having a range that is less than 100 meters. The first client device may be separated from the target device by a distance that is greater than the range of the first wireless technology.
Abstract:
Methods and apparatus for automatically coupling stackable modular devices are described. The modular devices may be coupled using electromagnetic forces generated by precisely-timed pulses of electric current through electromagnetic materials that cause a first modular device to screw itself into a second modular device. The modular devices may exchange data through electrical or optical connections after coupling. A method includes detecting that a second modular device is proximately and coaxially located to a first modular device, activating a plurality of electromagnetic elements in an annular electromagnetic array according to a timed sequence, each electromagnetic element being activated at a different time than the other electromagnetic elements in the plurality of electromagnetic elements, detecting that the second modular device is communicatively coupled with the first modular device, and deactivating the plurality of electromagnetic elements after detecting that the second modular device is communicatively coupled with the first modular device.
Abstract:
An improved wireless device generates a customized representation of a keyboard for a touch-sensitive screen. The wireless device generates an anatomical model specific to the operator of the wireless device in response to an operator contacting their fingertips in a “typing” position as if the operator were about to use a standard QWERTY keyboard. The anatomical model is used to derive a keyboard layout optimized for a present operator of the wireless device.
Abstract:
Systems, methods, and devices of the various embodiments enable content controls to be implemented by a modem of a mobile device to ensure the controls are implemented regardless of whether an application processor of the mobile device has been rooted. In an embodiment, content controls may be implemented by a modem or list component separate from the application processor when in a subsidized content delivery mode. In an embodiment, content controls may include a whitelist and/or a blacklist of IP addresses that addresses of content requests may be compared against to filter authorized content from unauthorized content. Content requests for authorized content may be sent to the content location, while content requests for unauthorized content may be dropped. In the various embodiments, a whitelist and/or blacklist may be updated on demand and/or automatically by a whitelist/blacklist management portal.
Abstract:
Various aspects directed towards automating an onboarding procedure are disclosed. In a first aspect, an administrative communication associated with onboarding an onboardable device is received by an access point (AP) device, such that the administrative communication originates from a device different than the onboardable device. The AP device then enables the onboardable device to access a secure network based on the administrative communication. In another aspect, an identifier is transmitted from an onboardable device while the onboardable device operates in an AP mode. The onboardable device then receives credentials associated with accessing a secure network via an AP device. Here, the credentials received from the AP device are in response to an authentication of the identifier by an administrator. The onboardable device then connects to the secure network by utilizing the credentials.
Abstract:
Systems, methods, and devices of the various embodiments enable content controls to be implemented by a modem of a mobile device to ensure the controls are implemented regardless of whether an application processor of the mobile device has been rooted. In an embodiment, content controls may be implemented by a modem or list component separate from the application processor when in a subsidized content delivery mode. In an embodiment, content controls may include a whitelist and/or a blacklist of IP addresses that addresses of content requests may be compared against to filter authorized content from unauthorized content. Content requests for authorized content may be sent to the content location, while content requests for unauthorized content may be dropped. In the various embodiments, a whitelist and/or blacklist may be updated on demand and/or automatically by a whitelist/blacklist management portal.
Abstract:
A method includes obtaining a received signal strength indication and processing the received signal strength indication to determine a range between a first device and a second device free of prior configuration data between the first device and the second device.