Abstract:
A method includes generating a high-band residual signal based on a high-band portion of an audio signal. The method also includes generating a harmonically extended signal at least partially based on a low-band portion of the audio signal. The method further includes determining a mixing factor based on the high-band residual signal, the harmonically extended signal, and modulated noise. The modulated noise is at least partially based on the harmonically extended signal and white noise.
Abstract:
A receiver is configured to receive packets that correspond to at least a subset of a sequence of packets and that include error correction data. The error correction data of a first packet of the packets includes a partial copy of a second packet. A buffer is configured to store the packets. An analyzer is configured to determine whether a first particular packet of the sequence is missing from the buffer, to determine whether a partial copy of the first particular packet is stored in the buffer as error correction data in a second particular packet, to update a value based at least in part on whether the first particular packet is missing from the buffer and the partial copy of the first particular packet is stored in the buffer, and to adjust an error recovery parameter based at least in part on the value.
Abstract:
A particular method includes determining, based on spectral information corresponding to an audio signal that includes a low-band portion and a high-band portion, that the audio signal includes a component corresponding to an artifact-generating condition. The method also includes filtering the high-band portion of the audio signal and generating an encoded signal. Generating the encoded signal includes determining gain information based on a ratio of a first energy corresponding to filtered high-band output to a second energy corresponding to the low-band portion to reduce an audible effect of the artifact-generating condition.
Abstract:
A method includes receiving, at a first device, a bit-stream from a second device. The method also includes generating, at a decoder of the first device, a low-band excitation signal from the bit-stream. The method also includes generating a first baseband signal at a high-band excitation generator of the decoder. Generating the first baseband signal includes performing a spectral flip operation on a nonlinearly transformed version of the low-band excitation signal, and the first baseband signal corresponds to a first sub-band of a high-band portion of an audio signal received at the second device. The method also includes generating a second baseband signal corresponding to a second sub-band of the high-band portion of the audio signal. The method also includes outputting at least a partially reconstructed version of the audio signal based at least in part on the first baseband signal and the second baseband signal.
Abstract:
A method includes separating, at a device, an input audio signal into at least a low-band signal and a high-band signal. The low-band signal corresponds to a low-band frequency range and the high-band signal corresponds to a high-band frequency range. The method also includes selecting a non-linear processing function of a plurality of non-linear processing functions. The method further includes generating a first extended signal based on the low-band signal and the non-linear processing function. The method also includes generating at least one adjustment parameter based on the first extended signal, the high-band signal, or both.
Abstract:
A method includes receiving, at a vocoder, an audio signal sampled at a first sample rate. The method also includes generating, at a low-band encoder of the vocoder, a low-band excitation signal based on a low-band portion of the audio signal. The method further includes generating a first baseband signal at a high-band encoder of the vocoder. Generating the first baseband signal includes performing a spectral flip operation on a nonlinearly transformed version of the low-band excitation signal. The first baseband signal corresponds to a first sub-band of a high-band portion of the audio signal. The method also includes generating a second baseband signal corresponding to a second sub-band of the high-band portion of the audio signal. The first sub-band is distinct from the second sub-band.
Abstract:
A method includes determining a first modeled high-band signal based on a low-band excitation signal of an audio signal, where the audio signal includes a high-band portion and a low-band portion. The method also includes determining scaling factors based on energy of sub-frames of the first modeled high-band signal and energy of corresponding sub-frames of the high-band portion of the audio signal. The method includes applying the scaling factors to a modeled high-band excitation signal to determine a scaled high-band excitation signal and determining a second modeled high-band signal based on the scaled high-band excitation signal. The method includes determining gain parameters based on the second modeled high-band signal and the high-band portion of the audio signal.
Abstract:
A method for quantizing phase information on an electronic device is described. The method includes obtaining a speech signal. The method also includes determining a prototype pitch period signal based on the speech signal and transforming the prototype pitch period signal into a first frequency-domain signal. The method additionally includes mapping the first frequency-domain signal into a plurality of subbands. The method also includes determining a global alignment based on the first frequency-domain signal and quantizing the global alignment utilizing scalar quantization to obtain a quantized global alignment. The method additionally includes determining a plurality of band alignments corresponding to the plurality of subbands. The method also includes quantizing the plurality of band alignments utilizing vector quantization to obtain a quantized plurality of band alignments. The method further includes transmitting the quantized global alignment and the quantized plurality of band alignments.
Abstract:
The present disclosure provides techniques for adjusting a temporal gain parameter and for adjusting linear prediction coefficients. A value of the temporal gain parameter may be based on a comparison of a synthesized high-band portion of an audio signal to a high-band portion of the audio signal. If a signal characteristic of an upper frequency range of the high-band portion satisfies a first threshold, the temporal gain parameter may be adjusted. A linear prediction (LP) gain may be determined based on an LP gain operation that uses a first value for an LP order. The LP gain may be associated with an energy level of an LP synthesis filter. The LP order may be reduced if the LP gain satisfies a second threshold.
Abstract:
A method includes separating, at a device, an input audio signal into at least a low-band signal and a high-band signal. The low-band signal corresponds to a low-band frequency range and the high-band signal corresponds to a high-band frequency range. The method also includes selecting a non-linear processing function of a plurality of non-linear processing functions. The method further includes generating a first extended signal based on the low-band signal and the non-linear processing function. The method also includes generating at least one adjustment parameter based on the first extended signal, the high-band signal, or both.