Abstract:
Apparatus and methods include receiving one or more first signals at a user equipment (UE) during a first portion of a transmission time interval (TTI), wherein the one or more first signals are transmitted by a network to the UE using a transport format; determining the transport format upon receiving the one or more first signals and prior to a second portion of the TTI subsequent to the first portion of the TTI; and receiving one or more second signals at the UE during a second portion of the TTI.
Abstract:
Various aspects of the present disclosure provide for conditionally disabling discontinuous reception (DRX). For example, DRX may be disabled if there is a loss of DRX synchronization, a loss of signal radio bearer traffic, a poor radio frequency condition, a low signal-to-interference ratio estimate, a low transmit power condition, or a drop in transmit power. Various aspects of the present disclosure provide for determining that an access terminal and the network are not in synchronization (e.g., DRX synchronization), and attempting to re-synchronize the access terminal and the network. In cases where a loss of DRX synchronization involves one entity having DRX enabled while another entity has DRX disabled, DRX may be temporarily disabled until synchronization is restored. In cases where a loss of DRX synchronization involves different entities using different subframe indices, the subframe index used by one of the entities may be changed to restore synchronization.
Abstract:
Methods and apparatus for avoiding power scaling and controlling transmit power in uplink data transmission are provided. If a user equipment (UE) would be transmit-power limited when transmitting data concurrently on an uplink high speed dedicated physical control channel (HS-DPCCH) and an uplink data channel, the UE may forgo building data for transmission on the uplink data channel to avoid power scaling. If the UE would be transmit-power limited when transmitting data concurrently on an HS-DPCCH and a dedicated physical control channel (DPCCH), the UE may reduce the transmission power of a portion of the data transmitted on the DPCCH to avoid power scaling. The UE may also boost transmission power of a negative acknowledge transmission above network-specified power level.
Abstract:
Aspects of the methods and apparatus relate to improving the overall decision quality of the Fractional-Dedicated Physical Channel (F-DPCH) channel. One aspect of the methods and apparatus relates to detecting bad channel conditions of a serving base station and improving the serving base station F-DPCH decoding performance in such bad conditions based on the serving base station signal-to interference ratio (SIR) estimation. Another aspect of the methods and apparatus relate to improving the overall decision quality of the F-DPCH channel in soft handover (HO) scenarios by increasing the non-serving base station F-DPCH channel rejections thresholds based on certain SIR estimations. The F-DPCH channel rejections thresholds are based on either the SIR of the non-serving base station, or a difference between non-serving base station SIR and serving base station SIR.
Abstract:
Disclosed are systems and methods for controlling by the User Equipment (UE) downlink power in early decode termination mode. In one aspect, the UE may be configured to perform early decoding of a downlink (DL) transmission from a base station. The UE further configured to estimate a signal-to-interference ratio (SIRE) of the DL transmission. Based on the SIRE, the UE is configured to select a Transmission Power Control (TPC) command sequence for a low power mode of operation of the UE in which a receiver is powered down. The UE is further configured to activate the low power mode and transmit the selected TPC command sequence to the base station to adjust a DL transmission power during the low power mode.
Abstract:
Various aspects of the present disclosure provide for conditionally disabling discontinuous reception (DRX). For example, DRX may be disabled if there is a loss of DRX synchronization, a loss of signal radio bearer traffic, a poor radio frequency condition, a low signal-to-interference ratio estimate, a low transmit power condition, or a drop in transmit power. Various aspects of the present disclosure provide for determining that an access terminal and the network are not in synchronization (e.g., DRX synchronization), and attempting to re-synchronize the access terminal and the network. In cases where a loss of DRX synchronization involves one entity having DRX enabled while another entity has DRX disabled, DRX may be temporarily disabled until synchronization is restored. In cases where a loss of DRX synchronization involves different entities using different subframe indices, the subframe index used by one of the entities may be changed to restore synchronization.
Abstract:
Certain aspects of the present disclosure relate to apparatuses and methods of managing signaling radio bearer (SRB) transmissions. In one aspect, the apparatuses and methods are configured to generate a SRB packet comprising signaling information, wherein the SRB packet is configured to be transmitted on a channel according to a scheduling serving grant, determine whether the SRB packet is unable to be transmitted based on resources allocated by the received scheduling serving grant, override the received scheduling serving grant in response to determining that the SRB packet is unable to be transmitted, and transmit at least a part of the SRB packet on the channel. In another aspect, a scheduling information message to indicate whether an additional scheduling severing grant is needed is transmitted on the channel along with at least the part of the SRB packet.
Abstract:
Methods and apparatus for event reporting based spurious dedicated physical channel (DPCH) removal in soft handover include user equipment (UE) management of spurious channels. In one aspect, the disclosure provides methods and apparatus for wireless communication that may include determining that a dedicated physical channel (DPCH) is spurious, removing the DPCH from soft combining, and sending a report indicating that a cell associated with the DPCH is unavailable. Further, the methods and apparatus may include incrementing a counter for the cell associated with the DPCH in response to removing the DPCH, determining whether the counter exceeds a removal threshold, and increasing a time to trigger for sending a report to add the cell to an active set in response to the counter exceeding the removal threshold. A cell associated with a removed DPCH may also be excluded from measurements of a current frequency.
Abstract:
Aspects of the disclosure are directed to estimating a signal to interference ratio. A signal energy estimate corresponding to a received data transmission is generated. A noise to interference ratio estimate corresponding to the received data transmission is generated. A bias, corresponding to the noise to interference ratio estimate, is subtracted from the signal energy estimate. A signal to interference ratio estimate is determined corresponding to the signal energy estimate less the bias, and the noise to interference ratio estimate.
Abstract:
Various aspects of the present disclosure provide methods and apparatuses that may provide for more efficient usage of time-to-trigger (TTT) timers in a wireless communication system, such that stopping or resetting of the TTT timer in response to receiving various measurement control messages (MCMs) can be limited to times when such stopping or resetting is appropriate.