Abstract:
A low noise amplifier (LNA) reduces matching and switch noise. The LNA includes a main radio frequency signal path, an auxiliary radio frequency signal path and a phase shifter. The main path includes a first transistor and an inductor. The inductor is positioned between an input port of the LNA and the first transistor. The first transistor receives an input radio frequency signal via the inductor and provides a first amplified signal based on the input radio frequency signal. The auxiliary radio frequency signal path provides a second amplified signal for a noise cancellation mode based on the input radio frequency signal. The phase shifter applies a phase shift to an output signal of the LNA based on the first amplified signal and the second amplified signal.
Abstract:
The present disclosure provides a reconfigurable low noise amplifier (LNA) circuit. This reconfigurable LNA circuit can be used for connecting multiple receive signal paths to a particular LNA in one configuration as well as used for connecting a single receive signal path to a particular LNA in another configuration. In the single receive signal path configuration, the single receive signal path is not degraded by the parasitics of a particular set of switches used for the multiple receive signal paths configuration.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for generating multiple oscillating signals having different phases. One example multiphase generating circuit generally includes a first phase shifting circuit configured to phase shift an input signal having an input frequency, such that an output signal of the first phase shifting circuit has a first phase difference with respect to the input signal; a first frequency dividing circuit configured to receive the input signal and output a first set of signals having a first frequency less than the input frequency of the input signal; and a second frequency dividing circuit configured to receive the output signal of the first phase shifting circuit and output a second set of signals having a second frequency less than the input frequency of the input signal. The multiphase signals may be used for fast frequency estimation of the input signal or in N-path filters.
Abstract:
A wireless communication device includes a first low-noise amplifier (LNA). The wireless communication device also includes a first LNA load circuit coupled to an output of the LNA. The wireless communication device further includes a power splitter switchably coupled to the first LNA load circuit. The power splitter includes a negatively coupled transformer and is switchably coupled to multiple outputs.
Abstract:
Locking multiple VCOs to generate a plurality of LO frequencies, including: receiving a plurality of divided VCO feedback signals from a plurality of VCOs; receiving a reference signal multiplied by a predetermined number of the plurality of VCOs; generating and processing the predetermined number of phase differences between the multiplied reference signal and the plurality of divided VCO feedback signals in a single PLL circuit including a digital loop filter to receive and process the phase differences and generate (produce) a filter output, wherein the digital loop filter includes a plurality of delay cells equal to the predetermined number; and generating and outputting (delayed) control voltages for the plurality of VCOs based on the filter output.