Abstract:
Multiple regions of a scene are identified, for example through user inputs to a touchscreen while the touchscreen displays preview frames of the scene. Multiple exposure settings are determined based on the identified regions. Each exposure setting is determined based on one of the identified regions, for instance to optimally expose that region. Multiple image frames are captured of the scene, with each image frame captured at a different one of the determined exposure settings. A high dynamic range (HDR) image of the scene is generated by merging the multiple image frames of the scene.
Abstract:
The disclosure generally relates to detecting playback buffer underrun at a sink device to improve streaming media quality. More particularly, according to various embodiments, a media source device may establish a connection with the sink device according to a short-range wireless communication protocol (e.g., Bluetooth) and stream multimedia data to the sink device over the established connection. The sink device may then store the streamed multimedia data in a playback buffer, render the streamed multimedia data from the playback buffer, and send a signal to the source device to indicate a status associated with the playback buffer. Accordingly, the source device may increase local resources allocated to streaming the multimedia data to the sink device in response to the status signal indicating an underrun condition in the playback buffer at the sink device (e.g., where the buffered multimedia data stored therein has fallen below a threshold).
Abstract:
Innovative techniques to generate a haptic stream are proposed. The proposed techniques allow haptic stream to be captured and along with audio/video stream. In so doing, a full experience—audio, video, haptics experience—may be experienced during playback.
Abstract:
Methods, devices, and systems for controlling imaging operations in electronic image capture devices are disclosed. In some aspects, a device includes processor coupled to a camera module, a user input surface, and a memory. The processor can be configured to receive, from the user input surface, a continuous user input. The continuous user input can include, at least, a first portion and a second portion. The processor can be further configured to control a first imaging operation based on a first input type received during the first portion and control a second imaging operation based on a second input type received during the second portion. The first input type can include movement of an input element relative to the user input surface, for example, and the second imaging operation can be different than the first imaging operation.