Abstract:
Aspects of the present disclosure provide a system, method, and apparatus for providing multimedia broadcast and multicast service (MBMS) operations in a wireless communication system. In some aspects of the present disclosure, the system, method and apparatus may provide flexibility for an application server to select one or more MBMS service delivery functionalities supported by a network device for transmission of multimedia content to a mobile device. The MBMS service delivery functionalities selected by the application server may be a subset of a plurality of MBMS service delivery functionalities supported by the network device.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) and a network node may determine a configuration that indicates an antenna switching point associated with an uplink communication configured for multiple repetitions. The UE may transmit one or more repetitions of the uplink communication using a first transmit antenna prior to the antenna switching point. The UE may transmit one or more repetitions of the uplink communication using a second transmit antenna after the antenna switching point. The network node may perform channel estimation for the uplink communication based at least in part on the configuration that indicates the antenna switching point. Numerous other aspects are described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, a synchronization signal block (SSB) associated with an SSB configuration for an operating band having a maximum bandwidth that is narrower than a minimum SSB bandwidth for an access link. The UE may decode the SSB based at least in part on the SSB configuration. Numerous other aspects are described.
Abstract:
Aspects of the present disclosure provide a system, method, and apparatus for providing multimedia broadcast and multicast service (MBMS) operations in a wireless communication system. In some aspects of the present disclosure, the system, method and apparatus may provide flexibility for an application server to select one or more MBMS service delivery functionalities supported by a network device for transmission of multimedia content to a mobile device. The MBMS service delivery functionalities selected by the application server may be a subset of a plurality of MBMS service delivery functionalities supported by the network device.
Abstract:
Certain aspects provide a method of wireless communications by a user equipment, such as a low-power user equipment. The method includes receiving, from one grouped user equipment of a first group of user equipments, an indication that the user equipment is a current group leader of the first group of user equipments; receiving, from one or more grouped user equipments of the first group of user equipments via a first wireless transceiver system, one or more data requests; and sending, to a network entity via a second wireless transceiver system, one or more data payloads associated with the one or more data requests.
Abstract:
A reference signal periodically transmitted by a base station in a wireless network can have certain proprietary properties to help prevent detection and utilization of the signal for unauthorized positioning of mobile devices. More specifically, a network node can obscure and introduce time-variation in mapping between positioning signals and a corresponding physical base stations. The network node may also introduce time variations in fields of a base station almanac (BSA) provided to subscribing user equipments (UEs). The information transmitted to the subscribing UEs may be encrypted.
Abstract:
Certain aspects of the present disclosure propose techniques for independently signaling features supported by a user equipment (UE) in different duplexing modes. The UE may be capable of communicating in frequency division duplexing (FDD) and time division duplexing (TDD) modes. The UE may obtain a FDD-specific feature group indicators (FGIs) set and a TDD-specific FGIs set, and signal at least one of the FDD-specific FGIs set or TDD-specific FGIs set. In addition, the UE may take one or more actions to reduce the likelihood of transitioning to a mode of operation that is different from its current mode of operation.