Abstract:
Aspects of the present disclosure provide an apparatus and methods for recovering data from a control channel in wireless communications. An apparatus decodes a CRC appended codeword to obtain a decoded codeword, and computes a first syndrome of the decoded codeword utilizing a parity check matrix. If the first syndrome is non-zero. The apparatus determines a location S and a length K of an error pattern in bits of the decoded codeword, an index set ε based on the values of S and K. A linear system is formed based on the parity check matrix and the error pattern in accordance with the index set ε. The apparatus determines a solution of the linear system, wherein the solution includes an estimated error pattern. A recovered codeword can be determined by removing the estimated error pattern from the decoded codeword.
Abstract:
Aspects of the present disclosure provide an apparatus and methods for recovering data from a control channel in wireless communications. An apparatus decodes a CRC appended codeword to obtain a decoded codeword, and computes a first syndrome of the decoded codeword utilizing a parity check matrix. If the first syndrome is non-zero, The apparatus determines a location S and a length K of an error pattern in bits of the decoded codeword, an index set ε based on the values of S and K. A linear system is formed based on the parity check matrix and the error pattern in accordance with the index set ε. The apparatus determines a solution of the linear system, wherein the solution includes an estimated error pattern. A recovered codeword can be determined by removing the estimated error pattern from the decoded codeword.
Abstract:
UEs are adapted to facilitate reconstruction of a segment of corrupted bits. According to one example, a UE can receive a control channel transmission such as a HS-SCCH transmission. The control channel transmission may include a plurality of information bits and a plurality of cyclic redundancy check (CRC) bits. The UE may further determine that a contiguous segment of the received information bits is corrupt. The UE may accordingly utilize the uncorrupted information bits and CRC bits to reconstruct the corrupt information bits. In some instances, the UE may utilize the uncorrupted bits to reconstruct the corrupt information bits using a new generator polynomial. In other instances, the UE may utilize the uncorrupted bits to reconstruct the corrupt information bits using the original generator polynomial. Other aspects, embodiments, and features are also included.
Abstract:
Methods and apparatus are described for performing cell selection for reducing an initial acquisition time between a user equipment (UE) and a network entity, comprising measuring a signal from a cell, the signal including at least one system information block (SIB), wherein the at least one SIB includes a plurality of cell selection threshold values; attempting to decode the at least one SIB; determining, in response to successfully decoding the at least one SIB, whether one or more measurements of the signal pass or fail a cell selection criteria check that includes the plurality of cell selection threshold values; determining, in response to the cell selection criteria check failing, whether the plurality of cell selection threshold values are within range of a plurality of corresponding minimum network threshold values; and performing a cell selection procedure on the cell in response to determining that the plurality of cell selection threshold values are within range of the plurality of corresponding minimum network threshold values.
Abstract:
Apparatuses and methods are described herein for managing communications in a wireless communication device, including, but not limited to determining failure to receive a first block, sending a signal as an indication for retransmission of systematic bits instead of sending a negative-acknowledgement (NACK) signal, and receiving a second block including the systematic bits.
Abstract:
The disclosure provides for determining whether an encoded multi-part message in a channel is intended for a user equipment (UE). The UE may receive a codeword that can be a component of the encoded multi-part message. The UE may also de-mask the received codeword based on an assigned identifier assigned to the UE to provide a data sequence. The UE may also damask the received codeword based on re-encoding the data sequence to provide a detected identifier. The UE can also compare the detected identifier to the assigned identifier. The UE can be determined to be the intended recipient of the encoded multi-part message when the detected identifier is equal to the assigned identifier. The disclosure also provides for jointly determining a mask and a data sequence that approximates the encoded multi-part message.
Abstract:
UEs are adapted to facilitate reconstruction of a segment of corrupted bits. According to one example, a UE can receive a control channel transmission such as a HS-SCCH transmission. The control channel transmission may include a plurality of information bits and a plurality of cyclic redundancy check (CRC) bits. The UE may further determine that a contiguous segment of the received information bits is corrupt. The UE may accordingly utilize the uncorrupted information bits and CRC bits to reconstruct the corrupt information bits. In some instances, the UE may utilize the uncorrupted bits to reconstruct the corrupt information bits using a new generator polynomial. In other instances, the UE may utilize the uncorrupted bits to reconstruct the corrupt information bits using the original generator polynomial.