Abstract:
A method of controlling power within a multicore central processing unit (CPU) is disclosed. The method may include monitoring a die temperature, determining a degree of parallelism within a workload of the CPU, and powering one or more cores of the CPU up or down based on the degree of parallelism, the die temperature, or a combination thereof.
Abstract:
A method of executing a dynamic clock and voltage scaling (DCVS) algorithm in a central processing unit (CPU) is disclosed and may include monitoring CPU activity and determining whether a workload is designated as a special workload when the workload is added to the CPU activity.
Abstract:
A method of controlling power within a multicore central processing unit (CPU) is disclosed. The method may include monitoring a die temperature, determining a degree of parallelism within a workload of the CPU, and powering one or more cores of the CPU up or down based on the degree of parallelism, the die temperature, or a combination thereof.
Abstract:
The aspects enable a computing device or microprocessor to determine a low power mode that provides the most system power savings by placing selected resources in a low power mode while continuing to function reliably, depending upon the resources not in use, acceptable system latencies, dynamic operating conditions (e.g., temperature), expected idle time, and the unique electrical characteristics of the particular device. Aspects provide a mechanism for determining an optimal low power configuration made up of a set of low power modes for the various resources within the computing device by determining which low power modes are valid at the time the processor enters an idle state, ranking the valid low power modes by expected power savings given the current device conditions, determining which valid low power mode provides the greatest power savings while meeting the latency requirements, and selecting a particular low power mode for each resource to enter.
Abstract:
A method of executing a dynamic clock and voltage scaling (DCVS) algorithm in a central processing unit (CPU) is disclosed and may include monitoring CPU activity and determining whether a workload is designated as a special workload when the workload is added to the CPU activity.