Abstract:
A method and system for managing safe downtime of shared resources within a portable computing device are described. The method may include determining a tolerance for a downtime period for an unacceptable deadline miss element of the portable computing device. Next, the determined tolerance for the downtime period may be transmitted to quality-of-service (“QoS”) controller. The QoS controller may determine if the tolerance for the downtime period needs to be adjusted. The QoS controller may receive a downtime request from one or more shared resources of the portable computing device. The QoS controller may determine if the downtime request needs to be adjusted. Next, the QoS controller may select a downtime request for execution and then identify which one or more unacceptable deadline miss elements of the portable computing device that are impacted by the selected downtime request.
Abstract:
Micro-idle power in a subsystem of a portable computing device may be actively managed based on client voting. Each client vote may include a client activity status indication and a client latency tolerance indication. Votes are aggregated to provide an aggregate client latency tolerance, which may be used to obtain a set of micro-idle time values. Micro-idle timers in the subsystem may be set to associated micro-idle time values. The micro-idle timers determine whether one or more of the micro-idle time values have elapsed. A power management policy associated with each micro-idle time value determined to have elapsed may be applied to a portion of the subsystem.
Abstract:
Various embodiments of methods and systems for managing compressed data transaction sizes in a system on a chip (“SoC”) in a portable computing device (“PCD”) are disclosed. Based on lengths of compressed data tiles associated in a group, wherein the compressed data tiles are comprised within a compressed image file, multiple compressed data tiles may be aggregated into a single, multi-tile transaction. A metadata file may be generated in association with the single multi-tile transaction to identify the transaction as a multi-tile transaction and provide offset data to distinguish data associated with the compressed data tiles. Using the metadata, embodiments of the solution may provide for random access and modification of the compressed data stored in association with a multi-tile transaction.
Abstract:
A method and system for adjusting bandwidth within a portable computing device based on danger signals monitored from one on more elements of the portable computing device are disclosed. A danger level of an unacceptable deadline miss (“UDM”) element of the portable computing device may be determined with a danger level sensor within the UDM element. Next, a quality of service (“QoS”) controller may adjust a magnitude for one or more danger levels received based on the UDM element type that generated the danger level and based on a potential fault condition type associated with the particular danger level. The danger levels received from one UDM element may be mapped to at least one of another UDM element and a non-UDM element. A quality of service policy for each UDM element and non-UDM element may be mapped in accordance with the danger levels.
Abstract:
Various embodiments of methods and systems for deep coalescing memory management (“DCMM”) in a portable computing device (“PCD”) are disclosed. Because multiple active multimedia (“MM”) clients running on the PCD may generate a random stream of mixed read and write requests associated with data stored at non-contiguous addresses in a double data rate (“DDR”) memory component, DCMM solutions triage the requests into dedicated deep coalescing (“DC”) cache buffers, sequentially ordering the requests and/or the DC buffers based on associated addresses for the data in the DDR, to optimize read and write transactions from and to the DDR memory component in blocks of contiguous data addresses.