Abstract:
Disclosed are techniques for performing wireless communication. In some aspects, a wireless communication device may determine that a prospective position of the wireless communication device is in a geographic area associated with a deficient global navigation satellite system (GNSS) signal. In some cases, the wireless communications device can transmit a sidelink synchronization signal to at least one user equipment (UE) device that is located within the geographic area associated with the deficient GNSS signal.
Abstract:
In an aspect, a method includes determining, by a processor of a vehicle, that an original equipment manufacturer (OEM) subscription of the vehicle is set to a low capability subscription. The method includes determining, by the processor, that the low capability subscription is unable to access a network at a current location of the vehicle based on the low capability subscription. The method also includes determining, by the processor and based on sensor data received from one or more sensors of the vehicle, a probability of an accident occurring to the vehicle. The method further includes determining, by the processor, that the probability satisfies a threshold. The method includes switching, by the processor, the OEM subscription from the low capability subscription to a high capability subscription.
Abstract:
Techniques described herein provide for filtering and prioritizing incoming messages, which can help reduce and smooth out the processing load on components used to process the incoming messages. Filtering techniques may comprise identifying a subset of nearby vehicles from which messages are to be processed, and further calculating remaining delay budgets with regard to the messages to prioritize them for processing. Different techniques for determining a subset of nearby vehicles can be used, and/or remaining delay budgets may be calculated and/or communicated in different ways.
Abstract:
User equipment (UE) may benefit from power management techniques, for example, in the context of cellular vehicle-to-everything (CV2X) communication. In various aspects of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE configured to determine whether a first subframe includes at least one sub-channel carrying information intended for the UE, receive the information via at least one receive (Rx) chain associated with the at least one sub-channel when the information intended for the UE is carried on the at least one sub-channel included in the first subframe, and deactivate the at least one Rx chain associated with the at least one sub-channel based on whether the information intended for the UE is absent from the at least one sub-channel included in the first subframe.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a device may receive a vehicle to everything (V2X) communication associated with a vehicle in an environment; determine, based at least in part on a vulnerability measure of a vulnerable roadside user (VRU) in the environment, a VRU notification profile associated with whether an alert is to be provided to a VRU to indicate vehicle data of the vehicle; and perform an action according to the VRU notification profile. Numerous other aspects are provided.
Abstract:
Aspects of the present disclosure provide a scheduling entity and methods of operating the scheduling entity such that the scheduling entity reconfigures/allocates its resources based on device capabilities of the wireless devices. The scheduling entity utilizes a first resource configuration to provide communications service to one or more wireless devices associated with the scheduling entity. The scheduling entity determines a change of the one or more wireless devices, wherein the change include at least one of a capability change of a wireless device, a quality of service (QoS) requirement change of a wireless device, an addition of a wireless device, or a removal of a wireless device. Based on at least one of a predetermined time of a day or the determined change, the scheduling entity reconfigures to a second resource configuration to facilitate resource utilization of the first wireless cell.
Abstract:
Some methods may involve receiving, at a first node of the health network, encrypted sensor data from one or more sensors. The first node may be in a data communication path between the one or more sensors and other nodes of the health network. The method may involve decrypting, by the first node of the health network, only a portion of the encrypted sensor data, and transmitting the encrypted sensor data from the first node of the health network to a second node of the health network. The first node may be a gateway device. In some examples, the second node may be able to decrypt more of the encrypted sensor data than the first node.
Abstract:
An example method includes determining an operating context of a small cell, wherein a base station of the small cell is co-located with an edge computing device. The method may further retrieving content from a network to the edge computing device based at least in part on the operating context and storing the content at the edge computing device for subsequent access by a mobile device in the small cell.
Abstract:
Aspects of the present disclosure provide a scheduling entity and methods of operating the scheduling entity such that the scheduling entity reconfigures/allocates its resources based on device capabilities of the wireless devices. The scheduling entity utilizes a first resource configuration to provide communications service to one or more wireless devices associated with the scheduling entity. The scheduling entity determines a change of the one or more wireless devices, wherein the change include at least one of a capability change of a wireless device, a quality of service (QoS) requirement change of a wireless device, an addition of a wireless device, or a removal of a wireless device. Based on at least one of a predetermined time of a day or the determined change, the scheduling entity reconfigures to a second resource configuration to facilitate resource utilization of the first wireless cell.
Abstract:
Systems and methods are described herein for providing a virtual conference with a master device connected to a plurality of satellite devices, including: receiving, by the master device, uplink data packets from a plurality of channels, each of the plurality of channels is associated with one of the plurality of satellite devices, and dividing, by the master device, the plurality of channels into two or more groups based on a conversation captured in the uplink data packets of each of the plurality of channels. The master device selects one group from the two or more groups for output. The master device also transmits downlink data packets corresponding to the selected group for the plurality of satellite devices.