Abstract:
Systems and methods are described herein for providing a virtual conference with a master device connected to a plurality of satellite devices, including: receiving, by the master device, uplink data packets from a plurality of channels, each of the plurality of channels is associated with one of the plurality of satellite devices, and dividing, by the master device, the plurality of channels into two or more groups based on a conversation captured in the uplink data packets of each of the plurality of channels. The master device selects one group from the two or more groups for output. The master device also transmits downlink data packets corresponding to the selected group for the plurality of satellite devices.
Abstract:
Methods, systems, and devices are described for assessing the quality of end-to-end connectivity for a wireless communication device. Data generated from at least one of existing traffic and networking operations caused by existing traffic of the wireless communication device may be monitored to obtain information related to connectivity quality. One or more values of one or more metrics may be determined using the obtained information. The quality of end-to-end connectivity for the wireless communication device may be assessed using the value(s) of the metric(s). Based at least in part on a result of the assessment, an action may be performed to improve connectivity quality for the wireless communication.
Abstract:
In general, techniques are described for limiting active noise cancellation output. As one example, an apparatus comprising one or more processors may perform the techniques. The one or more processors may be configured to, when an estimated noise level increases, dynamically lowering application of active noise cancellation to at least a portion of an audio signal to obtain at least a portion of an active noise cancelled version of the audio signal.
Abstract:
Systems and methods are described herein for providing a virtual conference with a master device connected to a plurality of satellite devices, including: receiving, by the master device, uplink data packets from a plurality of channels, each of the plurality of channels is associated with one of the plurality of satellite devices, and dividing, by the master device, the plurality of channels into two or more groups based on a conversation captured in the uplink data packets of each of the plurality of channels. The master device selects one group from the two or more groups for output. The master device also transmits downlink data packets corresponding to the selected group for the plurality of satellite devices.
Abstract:
Systems and methods are described herein for providing a virtual conference using a master device implemented with a personal communication device (PCD), including determining, by the master device, a latency for each of a plurality of satellite devices connected to the master device. The master device then determines an uplink buffer duration based on a difference between a highest latency and a lowest latency among the plurality of satellite devices. The master device determines a processing time for an uplink data packet, the processing time being determined based, at least in part, on the uplink buffer duration. The master device then performs signal processing at the processing time for the received uplink data packets.
Abstract:
In general, techniques are described for limiting active noise cancellation output. As one example, an apparatus comprising one or more processors may perform the techniques. The one or more processors may be configured to, when an estimated noise level increases, dynamically lowering application of active noise cancellation to at least a portion of an audio signal to obtain at least a portion of an active noise cancelled version of the audio signal.
Abstract:
Systems and methods are described herein for providing a virtual conference using a master device implemented with a personal communication device (PCD), including determining, by the master device, a latency for each of a plurality of satellite devices connected to the master device. The master device then determines an uplink buffer duration based on a difference between a highest latency and a lowest latency among the plurality of satellite devices. The master device determines a processing time for an uplink data packet, the processing time being determined based, at least in part, on the uplink buffer duration. The master device then performs signal processing at the processing time for the received uplink data packets.
Abstract:
Methods, systems, and devices are described for assessing the quality of end-to-end connectivity for a wireless communication device. Data generated from at least one of existing traffic and networking operations caused by existing traffic of the wireless communication device may be monitored to obtain information related to connectivity quality. One or more values of one or more metrics may be determined using the obtained information. The quality of end-to-end connectivity for the wireless communication device may be assessed using the value(s) of the metric(s). Based at least in part on a result of the assessment, an action may be performed to improve connectivity quality for the wireless communication.