Abstract:
In an aspect of the disclosure, a MOS device for reducing routing congestion caused by using split n-well cells in a merged n-well circuit block is provided. The MOS device may include a first set of cells adjacent to each other in a first direction. The MOS device may include a second set of cells adjacent to each other in the first direction and adjacent to the first set of cells in a second direction. The second set of cells each may include a first n-well, a second n-well, and a third n-well separated from each other. The MOS device may include an interconnect extending in the first direction in the second set of cells. The interconnect may provide a voltage source to the first n-well of each of the second set of cells.
Abstract:
Provided are systems and methods for reducing power consumption in the interface and routing circuitry associated with various core modules of an integrated circuit or system. One system includes core modules, glue logic domains adapted to interface the plurality of core modules, and a power controller electrically coupled to the glue logic domains. Each glue logic domain includes a glue logic module implemented as a soft macro with metal traces extending beyond an extent of the glue logic module. The power controller decouples power from selected glue logic domains based on control signals and/or detected power down states of core modules and/or other glue logic domains. The power controller facilitates the power transitions using logic state retention, logic state clamping, ordered or scheduled transitioning, and/or other power transition systems and methods.
Abstract:
A semiconductor apparatus is provided herein for buffering of nets routed through one or more areas associated with a first power domain that is different from a second power domain associated with the buffers and the buffered nets by limiting placement of these buffers in patterned areas associated with the second power domain. This provides for the routing of the buffered nets to be determined not only based on the shortest distance to travel from Point A to Point B, but also takes into account routing congestion on the semiconductor apparatus. Consequently, if an area on the semiconductor apparatus is congested, the buffered nets may be routed around the congestion. As such, although a path taken by a particular signal through the integrated circuit is not a direct route, it may still be of a distance to support a speed at which the particular signal needs to be transferred.
Abstract:
A semiconductor apparatus is provided herein for buffering of nets routed through one or more areas associated with a first power domain that is different from a second power domain associated with the buffers and the buffered nets by limiting placement of these buffers in patterned areas associated with the second power domain. This provides for the routing of the buffered nets to be determined not only based on the shortest distance to travel from Point A to Point B, but also takes into account routing congestion on the semiconductor apparatus. Consequently, if an area on the semiconductor apparatus is congested, the buffered nets may be routed around the congestion. As such, although a path taken by a particular signal through the integrated circuit is not a direct route, it may still be of a distance to support a speed at which the particular signal needs to be transferred.
Abstract:
A semiconductor apparatus is provided herein for buffering of nets routed through one or more areas associated with a first power domain that is different from a second power domain associated with the buffers and the buffered nets by limiting placement of these buffers in patterned areas associated with the second power domain. This provides for the routing of the buffered nets to be determined not only based on the shortest distance to travel from Point A to Point B, but also takes into account routing congestion on the semiconductor apparatus. Consequently, if an area on the semiconductor apparatus is congested, the buffered nets may be routed around the congestion. As such, although a path taken by a particular signal through the integrated circuit is not a direct route, it may still be of a distance to support a speed at which the particular signal needs to be transferred.
Abstract:
A MOS device includes a number of standard cells configured to reduce routing congestions while providing area savings on the MOS device. The standard cells may be single height standard cells that share an n-type well isolated from other nearby n-type wells. The input and output signal pins of the single height standard cells may be configured in a lowest possible metal layer (e.g., M1), while the secondary power pins of the single height standard cells may be configured in a higher metal layer (e.g., M2). Interconnects supplying power to secondary power pins may be configured along vertical tracks and shared among different sets of standard cells, which may reduce the number of vertical tracks used in the MOS device. The number of available horizontal routing tracks in the MOS device may remain unaffected, since the horizontal tracks already used by the primary power/ground mesh are used for power connection.
Abstract:
An integrated circuit (IC) is disclosed herein for managing power with flip-flops having a retention feature. In an example aspect, an IC includes a constant power rail, a collapsible power rail, multiple flip-flops, and power management circuitry. Each flip-flop of the multiple flip-flops includes a master portion that is coupled to the collapsible power rail and a slave portion that is coupled to the constant power rail. The power management circuitry is configured to combine a clock signal and a retention signal into a combined control signal and to provide the combined control signal to each flip-flop of the multiple flip-flops.
Abstract:
A semiconductor apparatus is provided herein for buffering of nets routed through one or more areas associated with a first power domain that is different from a second power domain associated with the buffers and the buffered nets by limiting placement of these buffers in patterned areas associated with the second power domain. This provides for the routing of the buffered nets to be determined not only based on the shortest distance to travel from Point A to Point B, but also takes into account routing congestion on the semiconductor apparatus. Consequently, if an area on the semiconductor apparatus is congested, the buffered nets may be routed around the congestion. As such, although a path taken by a particular signal through the integrated circuit is not a direct route, it may still be of a distance to support a speed at which the particular signal needs to be transferred.