Abstract:
Various embodiments of methods and systems for thermal energy management in a portable computing device (“PCD”) based on power level calculations are disclosed. An exemplary method includes tracking instantaneous operating temperatures and active power supply levels to one or more components. With an estimate or measurement of ambient temperature, the instantaneous operating temperature values and active power supply level values can be used to calculate an instantaneous thermal resistance value. In the event that thermal energy generation should be managed, a target operating temperature may be used with the ambient temperature and the instantaneous thermal resistance value to solve for an optimum power supply level. The active power supply level may then be adjusted based on the calculated optimum power supply level.
Abstract:
A method and system for managing a thermal policy of a receiving device that couples to a portable computing device (PCD) includes automatically detecting a presence of the PCD. After detecting the presence of the PCD, a command to deactivate a thermal sensor and to deactivate a power supply within the PCD may be issued. The thermal policy manager module of the receiving device may issue a command to adjust an operating condition of a processor within the PCD if a temperature value reaches a predetermined value. The thermal policy manager module may also adjust operation of an active cooling device if the temperature value sensed by a sensor within the PCD reaches a predetermined value. The receiving device may include at least one of a docking station, a tablet personal computer, a laptop personal computer, a desktop personal computer, a portable media player, a portable television, and a printer.
Abstract:
An apparatus for managing heat generated by at least one electronic component of a mobile device, the apparatus comprising: a housing for containing the electronic component of the mobile device; and a vapor chamber arranged in the housing, the vapor chamber having a cavity defined by a front wall and a rear wall opposite the rear wall, the front wall for receiving heat generated by the electronic component of the mobile device to evaporate fluid in the cavity into a vapor, the rear wall for receiving the vapor to allow the vapor to condense to liquid thereby cooling the rear wall of the vapor chamber; wherein an outer surface of the housing comprises at least a portion of the rear wall of the vapor chamber.
Abstract:
A method and system for managing a thermal policy of a receiving device that couples to a portable computing device (PCD) includes automatically detecting a presence of the PCD. After detecting the presence of the PCD, a command to deactivate a thermal sensor and to deactivate a power supply within the PCD may be issued. The thermal policy manager module of the receiving device may issue a command to adjust an operating condition of a processor within the PCD if a temperature value reaches a predetermined value. The thermal policy manager module may also adjust operation of an active cooling device if the temperature value sensed by a sensor within the PCD reaches a predetermined value. The receiving device may include at least one of a docking station, a tablet personal computer, a laptop personal computer, a desktop personal computer, a portable media player, a portable television, and a printer.
Abstract:
Various embodiments of methods and systems for adaptive thermal management techniques implemented in a portable computing device (“PCD”) are disclosed. Notably, in many PCDs, temperature thresholds associated with various components in the PCD such as, but not limited to, die junction temperatures, package on package (“PoP”) memory temperatures and the “touch temperature” of the external surfaces of the device itself limits the extent to which the performance capabilities of the PCD can be exploited. It is an advantage of the various embodiments of methods and systems for adaptive thermal management that, when a temperature threshold is violated, the performance of the PCD is sacrificed only as much and for as long as necessary to clear the violation before authorizing the thermally aggressive processing component(s) to return to a maximum operating power.
Abstract:
Various embodiments of methods and systems for tuning a thermal strategy of a portable computing device (“PCD”) based on PCD location information. In an exemplary embodiment, it may be recognized that the PCD is in an active state and producing thermal energy, or that one or more thermally aggressive components of the PCD are operating near temperature thresholds for efficient operation. The PCD location information is used to estimate the environmental ambient temperature to which the PCD is exposed. Certain embodiments may simply render the estimated ambient temperature for the benefit of the user or may use the estimated ambient temperature as an input to a program, application, or algorithm running on the PCD. It is envisioned that certain embodiments of the systems and methods may use the estimated ambient temperature to adjust temperature thresholds in the PCD against which thermal management policies govern thermally aggressive PCD components.
Abstract:
Various embodiments of methods and systems for estimating environmental ambient temperature of a portable computing device (“PCD”) from temperature measurements taken within the PCD are disclosed. In an exemplary embodiment, it may be recognized that the PCD is in an idle state, thus producing little or no thermal energy. Temperature measurements are then taken from temperature sensors within the PCD and used to estimate the environmental ambient temperature to which the PCD is exposed. Certain embodiments may simply render the estimated ambient temperature for the benefit of the user or use the estimated ambient temperature as an input to a program or application running on the PCD. It is envisioned that certain embodiments of the systems and methods may use the estimated ambient temperature to adjust temperature thresholds in the PCD against which thermal management policies govern thermally aggressive processing components.
Abstract:
Various embodiments of methods and systems for thermal energy management in a portable computing device (“PCD”) based on power level calculations are disclosed. An exemplary method includes tracking instantaneous operating temperatures and active power supply levels to one or more components. With an estimate or measurement of ambient temperature, the instantaneous operating temperature values and active power supply level values can be used to calculate an instantaneous thermal resistance value. In the event that thermal energy generation should be managed, a target operating temperature may be used with the ambient temperature and the instantaneous thermal resistance value to solve for an optimum power supply level. The active power supply level may then be adjusted based on the calculated optimum power supply level.
Abstract:
Various embodiments of methods and systems for thermal energy management in a portable computing device (“PCD”) based on power level calculations are disclosed. An exemplary method includes tracking instantaneous operating temperatures and active power supply levels to one or more components. With an estimate or measurement of ambient temperature, the instantaneous operating temperature values and active power supply level values can be used to calculate an instantaneous thermal resistance value. In the event that thermal energy generation should be managed, a target operating temperature may be used with the ambient temperature and the instantaneous thermal resistance value to solve for an optimum power supply level. The active power supply level may then be adjusted based on the calculated optimum power supply level.